File size: 7,960 Bytes
479e33f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
# text encoder出力のdiskへの事前キャッシュを行う / cache text encoder outputs to disk in advance
import argparse
import math
from multiprocessing import Value
import os
from accelerate.utils import set_seed
import torch
from tqdm import tqdm
from library import config_util
from library import train_util
from library import sdxl_train_util
from library.config_util import (
ConfigSanitizer,
BlueprintGenerator,
)
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
def cache_to_disk(args: argparse.Namespace) -> None:
train_util.prepare_dataset_args(args, True)
# check cache arg
assert (
args.cache_text_encoder_outputs_to_disk
), "cache_text_encoder_outputs_to_disk must be True / cache_text_encoder_outputs_to_diskはTrueである必要があります"
# できるだけ準備はしておくが今のところSDXLのみしか動かない
assert (
args.sdxl
), "cache_text_encoder_outputs_to_disk is only available for SDXL / cache_text_encoder_outputs_to_diskはSDXLのみ利用可能です"
use_dreambooth_method = args.in_json is None
if args.seed is not None:
set_seed(args.seed) # 乱数系列を初期化する
# tokenizerを準備する:datasetを動かすために必要
if args.sdxl:
tokenizer1, tokenizer2 = sdxl_train_util.load_tokenizers(args)
tokenizers = [tokenizer1, tokenizer2]
else:
tokenizer = train_util.load_tokenizer(args)
tokenizers = [tokenizer]
# データセットを準備する
if args.dataset_class is None:
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, False, True))
if args.dataset_config is not None:
logger.info(f"Load dataset config from {args.dataset_config}")
user_config = config_util.load_user_config(args.dataset_config)
ignored = ["train_data_dir", "in_json"]
if any(getattr(args, attr) is not None for attr in ignored):
logger.warning(
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
", ".join(ignored)
)
)
else:
if use_dreambooth_method:
logger.info("Using DreamBooth method.")
user_config = {
"datasets": [
{
"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(
args.train_data_dir, args.reg_data_dir
)
}
]
}
else:
logger.info("Training with captions.")
user_config = {
"datasets": [
{
"subsets": [
{
"image_dir": args.train_data_dir,
"metadata_file": args.in_json,
}
]
}
]
}
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizers)
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
else:
train_dataset_group = train_util.load_arbitrary_dataset(args, tokenizers)
current_epoch = Value("i", 0)
current_step = Value("i", 0)
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)
# acceleratorを準備する
logger.info("prepare accelerator")
accelerator = train_util.prepare_accelerator(args)
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype, _ = train_util.prepare_dtype(args)
# モデルを読み込む
logger.info("load model")
if args.sdxl:
(_, text_encoder1, text_encoder2, _, _, _, _) = sdxl_train_util.load_target_model(args, accelerator, "sdxl", weight_dtype)
text_encoders = [text_encoder1, text_encoder2]
else:
text_encoder1, _, _, _ = train_util.load_target_model(args, weight_dtype, accelerator)
text_encoders = [text_encoder1]
for text_encoder in text_encoders:
text_encoder.to(accelerator.device, dtype=weight_dtype)
text_encoder.requires_grad_(False)
text_encoder.eval()
# dataloaderを準備する
train_dataset_group.set_caching_mode("text")
# DataLoaderのプロセス数:0 は persistent_workers が使えないので注意
n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers
train_dataloader = torch.utils.data.DataLoader(
train_dataset_group,
batch_size=1,
shuffle=True,
collate_fn=collator,
num_workers=n_workers,
persistent_workers=args.persistent_data_loader_workers,
)
# acceleratorを使ってモデルを準備する:マルチGPUで使えるようになるはず
train_dataloader = accelerator.prepare(train_dataloader)
# データ取得のためのループ
for batch in tqdm(train_dataloader):
absolute_paths = batch["absolute_paths"]
input_ids1_list = batch["input_ids1_list"]
input_ids2_list = batch["input_ids2_list"]
image_infos = []
for absolute_path, input_ids1, input_ids2 in zip(absolute_paths, input_ids1_list, input_ids2_list):
image_info = train_util.ImageInfo(absolute_path, 1, "dummy", False, absolute_path)
image_info.text_encoder_outputs_npz = os.path.splitext(absolute_path)[0] + train_util.TEXT_ENCODER_OUTPUTS_CACHE_SUFFIX
image_info
if args.skip_existing:
if os.path.exists(image_info.text_encoder_outputs_npz):
logger.warning(f"Skipping {image_info.text_encoder_outputs_npz} because it already exists.")
continue
image_info.input_ids1 = input_ids1
image_info.input_ids2 = input_ids2
image_infos.append(image_info)
if len(image_infos) > 0:
b_input_ids1 = torch.stack([image_info.input_ids1 for image_info in image_infos])
b_input_ids2 = torch.stack([image_info.input_ids2 for image_info in image_infos])
train_util.cache_batch_text_encoder_outputs(
image_infos, tokenizers, text_encoders, args.max_token_length, True, b_input_ids1, b_input_ids2, weight_dtype
)
accelerator.wait_for_everyone()
accelerator.print(f"Finished caching latents for {len(train_dataset_group)} batches.")
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
train_util.add_sd_models_arguments(parser)
train_util.add_training_arguments(parser, True)
train_util.add_dataset_arguments(parser, True, True, True)
config_util.add_config_arguments(parser)
sdxl_train_util.add_sdxl_training_arguments(parser)
parser.add_argument("--sdxl", action="store_true", help="Use SDXL model / SDXLモデルを使用する")
parser.add_argument(
"--skip_existing",
action="store_true",
help="skip images if npz already exists (both normal and flipped exists if flip_aug is enabled) / npzが既に存在する画像をスキップする(flip_aug有効時は通常、反転の両方が存在する画像をスキップ)",
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
args = train_util.read_config_from_file(args, parser)
cache_to_disk(args)
|