File size: 6,612 Bytes
07b7d37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import argparse
import os

import torch
from safetensors import safe_open
from safetensors.torch import load_file, save_file
from tqdm import tqdm
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)

def is_unet_key(key):
    # VAE or TextEncoder, the last one is for SDXL
    return not ("first_stage_model" in key or "cond_stage_model" in key or "conditioner." in key)


TEXT_ENCODER_KEY_REPLACEMENTS = [
    ("cond_stage_model.transformer.embeddings.", "cond_stage_model.transformer.text_model.embeddings."),
    ("cond_stage_model.transformer.encoder.", "cond_stage_model.transformer.text_model.encoder."),
    ("cond_stage_model.transformer.final_layer_norm.", "cond_stage_model.transformer.text_model.final_layer_norm."),
]


# support for models with different text encoder keys
def replace_text_encoder_key(key):
    for rep_from, rep_to in TEXT_ENCODER_KEY_REPLACEMENTS:
        if key.startswith(rep_from):
            return True, rep_to + key[len(rep_from) :]
    return False, key


def merge(args):
    if args.precision == "fp16":
        dtype = torch.float16
    elif args.precision == "bf16":
        dtype = torch.bfloat16
    else:
        dtype = torch.float

    if args.saving_precision == "fp16":
        save_dtype = torch.float16
    elif args.saving_precision == "bf16":
        save_dtype = torch.bfloat16
    else:
        save_dtype = torch.float

    # check if all models are safetensors
    for model in args.models:
        if not model.endswith("safetensors"):
            logger.info(f"Model {model} is not a safetensors model")
            exit()
        if not os.path.isfile(model):
            logger.info(f"Model {model} does not exist")
            exit()

    assert args.ratios is None or len(args.models) == len(args.ratios), "ratios must be the same length as models"

    # load and merge
    ratio = 1.0 / len(args.models)  # default
    supplementary_key_ratios = {}  # [key] = ratio, for keys not in all models, add later

    merged_sd = None
    first_model_keys = set()  # check missing keys in other models
    for i, model in enumerate(args.models):
        if args.ratios is not None:
            ratio = args.ratios[i]

        if merged_sd is None:
            # load first model
            logger.info(f"Loading model {model}, ratio = {ratio}...")
            merged_sd = {}
            with safe_open(model, framework="pt", device=args.device) as f:
                for key in tqdm(f.keys()):
                    value = f.get_tensor(key)
                    _, key = replace_text_encoder_key(key)

                    first_model_keys.add(key)

                    if not is_unet_key(key) and args.unet_only:
                        supplementary_key_ratios[key] = 1.0  # use first model's value for VAE or TextEncoder
                        continue

                    value = ratio * value.to(dtype)  # first model's value * ratio
                    merged_sd[key] = value

            logger.info(f"Model has {len(merged_sd)} keys " + ("(UNet only)" if args.unet_only else ""))
            continue

        # load other models
        logger.info(f"Loading model {model}, ratio = {ratio}...")

        with safe_open(model, framework="pt", device=args.device) as f:
            model_keys = f.keys()
            for key in tqdm(model_keys):
                _, new_key = replace_text_encoder_key(key)
                if new_key not in merged_sd:
                    if args.show_skipped and new_key not in first_model_keys:
                        logger.info(f"Skip: {new_key}")
                    continue

                value = f.get_tensor(key)
                merged_sd[new_key] = merged_sd[new_key] + ratio * value.to(dtype)

            # enumerate keys not in this model
            model_keys = set(model_keys)
            for key in merged_sd.keys():
                if key in model_keys:
                    continue
                logger.warning(f"Key {key} not in model {model}, use first model's value")
                if key in supplementary_key_ratios:
                    supplementary_key_ratios[key] += ratio
                else:
                    supplementary_key_ratios[key] = ratio

    # add supplementary keys' value (including VAE and TextEncoder)
    if len(supplementary_key_ratios) > 0:
        logger.info("add first model's value")
        with safe_open(args.models[0], framework="pt", device=args.device) as f:
            for key in tqdm(f.keys()):
                _, new_key = replace_text_encoder_key(key)
                if new_key not in supplementary_key_ratios:
                    continue

                if is_unet_key(new_key):  # not VAE or TextEncoder
                    logger.warning(f"Key {new_key} not in all models, ratio = {supplementary_key_ratios[new_key]}")

                value = f.get_tensor(key)  # original key

                if new_key not in merged_sd:
                    merged_sd[new_key] = supplementary_key_ratios[new_key] * value.to(dtype)
                else:
                    merged_sd[new_key] = merged_sd[new_key] + supplementary_key_ratios[new_key] * value.to(dtype)

    # save
    output_file = args.output
    if not output_file.endswith(".safetensors"):
        output_file = output_file + ".safetensors"

    logger.info(f"Saving to {output_file}...")

    # convert to save_dtype
    for k in merged_sd.keys():
        merged_sd[k] = merged_sd[k].to(save_dtype)

    save_file(merged_sd, output_file)

    logger.info("Done!")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Merge models")
    parser.add_argument("--models", nargs="+", type=str, help="Models to merge")
    parser.add_argument("--output", type=str, help="Output model")
    parser.add_argument("--ratios", nargs="+", type=float, help="Ratios of models, default is equal, total = 1.0")
    parser.add_argument("--unet_only", action="store_true", help="Only merge unet")
    parser.add_argument("--device", type=str, default="cpu", help="Device to use, default is cpu")
    parser.add_argument(
        "--precision", type=str, default="float", choices=["float", "fp16", "bf16"], help="Calculation precision, default is float"
    )
    parser.add_argument(
        "--saving_precision",
        type=str,
        default="float",
        choices=["float", "fp16", "bf16"],
        help="Saving precision, default is float",
    )
    parser.add_argument("--show_skipped", action="store_true", help="Show skipped keys (keys not in first model)")

    args = parser.parse_args()
    merge(args)