File size: 233,901 Bytes
3f21541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
# common functions for training

import argparse
import ast
import asyncio
import datetime
import importlib
import json
import logging
import pathlib
import re
import shutil
import time
from typing import (
    Dict,
    List,
    NamedTuple,
    Optional,
    Sequence,
    Tuple,
    Union,
)
from accelerate import Accelerator, InitProcessGroupKwargs, DistributedDataParallelKwargs, PartialState
import glob
import math
import os
import random
import hashlib
import subprocess
from io import BytesIO
import toml

from tqdm import tqdm

import torch
from library.device_utils import init_ipex, clean_memory_on_device

init_ipex()

from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import Optimizer
from torchvision import transforms
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextModelWithProjection
import transformers
from diffusers.optimization import SchedulerType, TYPE_TO_SCHEDULER_FUNCTION
from diffusers import (
    StableDiffusionPipeline,
    DDPMScheduler,
    EulerAncestralDiscreteScheduler,
    DPMSolverMultistepScheduler,
    DPMSolverSinglestepScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
    DDIMScheduler,
    EulerDiscreteScheduler,
    HeunDiscreteScheduler,
    KDPM2DiscreteScheduler,
    KDPM2AncestralDiscreteScheduler,
    AutoencoderKL,
)
from library import custom_train_functions
from library.original_unet import UNet2DConditionModel
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import imagesize
import cv2
import safetensors.torch
from library.lpw_stable_diffusion import StableDiffusionLongPromptWeightingPipeline
import library.model_util as model_util
import library.huggingface_util as huggingface_util
import library.sai_model_spec as sai_model_spec
import library.deepspeed_utils as deepspeed_utils
from library.utils import setup_logging

setup_logging()
import logging

logger = logging.getLogger(__name__)
# from library.attention_processors import FlashAttnProcessor
# from library.hypernetwork import replace_attentions_for_hypernetwork
from library.original_unet import UNet2DConditionModel

# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う
TOKENIZER_PATH = "openai/clip-vit-large-patch14"
V2_STABLE_DIFFUSION_PATH = "stabilityai/stable-diffusion-2"  # ここからtokenizerだけ使う v2とv2.1はtokenizer仕様は同じ

HIGH_VRAM = False

# checkpointファイル名
EPOCH_STATE_NAME = "{}-{:06d}-state"
EPOCH_FILE_NAME = "{}-{:06d}"
EPOCH_DIFFUSERS_DIR_NAME = "{}-{:06d}"
LAST_STATE_NAME = "{}-state"
DEFAULT_EPOCH_NAME = "epoch"
DEFAULT_LAST_OUTPUT_NAME = "last"

DEFAULT_STEP_NAME = "at"
STEP_STATE_NAME = "{}-step{:08d}-state"
STEP_FILE_NAME = "{}-step{:08d}"
STEP_DIFFUSERS_DIR_NAME = "{}-step{:08d}"

# region dataset

IMAGE_EXTENSIONS = [".png", ".jpg", ".jpeg", ".webp", ".bmp", ".PNG", ".JPG", ".JPEG", ".WEBP", ".BMP"]

try:
    import pillow_avif

    IMAGE_EXTENSIONS.extend([".avif", ".AVIF"])
except:
    pass

# JPEG-XL on Linux
try:
    from jxlpy import JXLImagePlugin

    IMAGE_EXTENSIONS.extend([".jxl", ".JXL"])
except:
    pass

# JPEG-XL on Windows
try:
    import pillow_jxl

    IMAGE_EXTENSIONS.extend([".jxl", ".JXL"])
except:
    pass

IMAGE_TRANSFORMS = transforms.Compose(
    [
        transforms.ToTensor(),
        transforms.Normalize([0.5], [0.5]),
    ]
)

TEXT_ENCODER_OUTPUTS_CACHE_SUFFIX = "_te_outputs.npz"


class ImageInfo:
    def __init__(self, image_key: str, num_repeats: int, caption: str, is_reg: bool, absolute_path: str) -> None:
        self.image_key: str = image_key
        self.num_repeats: int = num_repeats
        self.caption: str = caption
        self.is_reg: bool = is_reg
        self.absolute_path: str = absolute_path
        self.image_size: Tuple[int, int] = None
        self.resized_size: Tuple[int, int] = None
        self.bucket_reso: Tuple[int, int] = None
        self.latents: torch.Tensor = None
        self.latents_flipped: torch.Tensor = None
        self.latents_npz: str = None
        self.latents_original_size: Tuple[int, int] = None  # original image size, not latents size
        self.latents_crop_ltrb: Tuple[int, int] = None  # crop left top right bottom in original pixel size, not latents size
        self.cond_img_path: str = None
        self.image: Optional[Image.Image] = None  # optional, original PIL Image
        # SDXL, optional
        self.text_encoder_outputs_npz: Optional[str] = None
        self.text_encoder_outputs1: Optional[torch.Tensor] = None
        self.text_encoder_outputs2: Optional[torch.Tensor] = None
        self.text_encoder_pool2: Optional[torch.Tensor] = None


class BucketManager:
    def __init__(self, no_upscale, max_reso, min_size, max_size, reso_steps) -> None:
        if max_size is not None:
            if max_reso is not None:
                assert max_size >= max_reso[0], "the max_size should be larger than the width of max_reso"
                assert max_size >= max_reso[1], "the max_size should be larger than the height of max_reso"
            if min_size is not None:
                assert max_size >= min_size, "the max_size should be larger than the min_size"

        self.no_upscale = no_upscale
        if max_reso is None:
            self.max_reso = None
            self.max_area = None
        else:
            self.max_reso = max_reso
            self.max_area = max_reso[0] * max_reso[1]
        self.min_size = min_size
        self.max_size = max_size
        self.reso_steps = reso_steps

        self.resos = []
        self.reso_to_id = {}
        self.buckets = []  # 前処理時は (image_key, image, original size, crop left/top)、学習時は image_key

    def add_image(self, reso, image_or_info):
        bucket_id = self.reso_to_id[reso]
        self.buckets[bucket_id].append(image_or_info)

    def shuffle(self):
        for bucket in self.buckets:
            random.shuffle(bucket)

    def sort(self):
        # 解像度順にソートする(表示時、メタデータ格納時の見栄えをよくするためだけ)。bucketsも入れ替えてreso_to_idも振り直す
        sorted_resos = self.resos.copy()
        sorted_resos.sort()

        sorted_buckets = []
        sorted_reso_to_id = {}
        for i, reso in enumerate(sorted_resos):
            bucket_id = self.reso_to_id[reso]
            sorted_buckets.append(self.buckets[bucket_id])
            sorted_reso_to_id[reso] = i

        self.resos = sorted_resos
        self.buckets = sorted_buckets
        self.reso_to_id = sorted_reso_to_id

    def make_buckets(self):
        resos = model_util.make_bucket_resolutions(self.max_reso, self.min_size, self.max_size, self.reso_steps)
        self.set_predefined_resos(resos)

    def set_predefined_resos(self, resos):
        # 規定サイズから選ぶ場合の解像度、aspect ratioの情報を格納しておく
        self.predefined_resos = resos.copy()
        self.predefined_resos_set = set(resos)
        self.predefined_aspect_ratios = np.array([w / h for w, h in resos])

    def add_if_new_reso(self, reso):
        if reso not in self.reso_to_id:
            bucket_id = len(self.resos)
            self.reso_to_id[reso] = bucket_id
            self.resos.append(reso)
            self.buckets.append([])
            # logger.info(reso, bucket_id, len(self.buckets))

    def round_to_steps(self, x):
        x = int(x + 0.5)
        return x - x % self.reso_steps

    def select_bucket(self, image_width, image_height):
        aspect_ratio = image_width / image_height
        if not self.no_upscale:
            # 拡大および縮小を行う
            # 同じaspect ratioがあるかもしれないので(fine tuningで、no_upscale=Trueで前処理した場合)、解像度が同じものを優先する
            reso = (image_width, image_height)
            if reso in self.predefined_resos_set:
                pass
            else:
                ar_errors = self.predefined_aspect_ratios - aspect_ratio
                predefined_bucket_id = np.abs(ar_errors).argmin()  # 当該解像度以外でaspect ratio errorが最も少ないもの
                reso = self.predefined_resos[predefined_bucket_id]

            ar_reso = reso[0] / reso[1]
            if aspect_ratio > ar_reso:  # 横が長い→縦を合わせる
                scale = reso[1] / image_height
            else:
                scale = reso[0] / image_width

            resized_size = (int(image_width * scale + 0.5), int(image_height * scale + 0.5))
            # logger.info(f"use predef, {image_width}, {image_height}, {reso}, {resized_size}")
        else:
            # 縮小のみを行う
            if image_width * image_height > self.max_area:
                # 画像が大きすぎるのでアスペクト比を保ったまま縮小することを前提にbucketを決める
                resized_width = math.sqrt(self.max_area * aspect_ratio)
                resized_height = self.max_area / resized_width
                assert abs(resized_width / resized_height - aspect_ratio) < 1e-2, "aspect is illegal"

                # リサイズ後の短辺または長辺をreso_steps単位にする:aspect ratioの差が少ないほうを選ぶ
                # 元のbucketingと同じロジック
                b_width_rounded = self.round_to_steps(resized_width)
                b_height_in_wr = self.round_to_steps(b_width_rounded / aspect_ratio)
                ar_width_rounded = b_width_rounded / b_height_in_wr

                b_height_rounded = self.round_to_steps(resized_height)
                b_width_in_hr = self.round_to_steps(b_height_rounded * aspect_ratio)
                ar_height_rounded = b_width_in_hr / b_height_rounded

                # logger.info(b_width_rounded, b_height_in_wr, ar_width_rounded)
                # logger.info(b_width_in_hr, b_height_rounded, ar_height_rounded)

                if abs(ar_width_rounded - aspect_ratio) < abs(ar_height_rounded - aspect_ratio):
                    resized_size = (b_width_rounded, int(b_width_rounded / aspect_ratio + 0.5))
                else:
                    resized_size = (int(b_height_rounded * aspect_ratio + 0.5), b_height_rounded)
                # logger.info(resized_size)
            else:
                resized_size = (image_width, image_height)  # リサイズは不要

            # 画像のサイズ未満をbucketのサイズとする(paddingせずにcroppingする)
            bucket_width = resized_size[0] - resized_size[0] % self.reso_steps
            bucket_height = resized_size[1] - resized_size[1] % self.reso_steps
            # logger.info(f"use arbitrary {image_width}, {image_height}, {resized_size}, {bucket_width}, {bucket_height}")

            reso = (bucket_width, bucket_height)

        self.add_if_new_reso(reso)

        ar_error = (reso[0] / reso[1]) - aspect_ratio
        return reso, resized_size, ar_error

    @staticmethod
    def get_crop_ltrb(bucket_reso: Tuple[int, int], image_size: Tuple[int, int]):
        # Stability AIの前処理に合わせてcrop left/topを計算する。crop rightはflipのaugmentationのために求める
        # Calculate crop left/top according to the preprocessing of Stability AI. Crop right is calculated for flip augmentation.

        bucket_ar = bucket_reso[0] / bucket_reso[1]
        image_ar = image_size[0] / image_size[1]
        if bucket_ar > image_ar:
            # bucketのほうが横長→縦を合わせる
            resized_width = bucket_reso[1] * image_ar
            resized_height = bucket_reso[1]
        else:
            resized_width = bucket_reso[0]
            resized_height = bucket_reso[0] / image_ar
        crop_left = (bucket_reso[0] - resized_width) // 2
        crop_top = (bucket_reso[1] - resized_height) // 2
        crop_right = crop_left + resized_width
        crop_bottom = crop_top + resized_height
        return crop_left, crop_top, crop_right, crop_bottom


class BucketBatchIndex(NamedTuple):
    bucket_index: int
    bucket_batch_size: int
    batch_index: int


class AugHelper:
    # albumentationsへの依存をなくしたがとりあえず同じinterfaceを持たせる

    def __init__(self):
        pass

    def color_aug(self, image: np.ndarray):
        # self.color_aug_method = albu.OneOf(
        #     [
        #         albu.HueSaturationValue(8, 0, 0, p=0.5),
        #         albu.RandomGamma((95, 105), p=0.5),
        #     ],
        #     p=0.33,
        # )
        hue_shift_limit = 8

        # remove dependency to albumentations
        if random.random() <= 0.33:
            if random.random() > 0.5:
                # hue shift
                hsv_img = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
                hue_shift = random.uniform(-hue_shift_limit, hue_shift_limit)
                if hue_shift < 0:
                    hue_shift = 180 + hue_shift
                hsv_img[:, :, 0] = (hsv_img[:, :, 0] + hue_shift) % 180
                image = cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR)
            else:
                # random gamma
                gamma = random.uniform(0.95, 1.05)
                image = np.clip(image**gamma, 0, 255).astype(np.uint8)

        return {"image": image}

    def get_augmentor(self, use_color_aug: bool):  # -> Optional[Callable[[np.ndarray], Dict[str, np.ndarray]]]:
        return self.color_aug if use_color_aug else None


class BaseSubset:
    def __init__(
        self,
        image_dir: Optional[str],
        num_repeats: int,
        shuffle_caption: bool,
        caption_separator: str,
        keep_tokens: int,
        keep_tokens_separator: str,
        secondary_separator: Optional[str],
        enable_wildcard: bool,
        color_aug: bool,
        flip_aug: bool,
        face_crop_aug_range: Optional[Tuple[float, float]],
        random_crop: bool,
        caption_dropout_rate: float,
        caption_dropout_every_n_epochs: int,
        caption_tag_dropout_rate: float,
        caption_prefix: Optional[str],
        caption_suffix: Optional[str],
        token_warmup_min: int,
        token_warmup_step: Union[float, int],
    ) -> None:
        self.image_dir = image_dir
        self.num_repeats = num_repeats
        self.shuffle_caption = shuffle_caption
        self.caption_separator = caption_separator
        self.keep_tokens = keep_tokens
        self.keep_tokens_separator = keep_tokens_separator
        self.secondary_separator = secondary_separator
        self.enable_wildcard = enable_wildcard
        self.color_aug = color_aug
        self.flip_aug = flip_aug
        self.face_crop_aug_range = face_crop_aug_range
        self.random_crop = random_crop
        self.caption_dropout_rate = caption_dropout_rate
        self.caption_dropout_every_n_epochs = caption_dropout_every_n_epochs
        self.caption_tag_dropout_rate = caption_tag_dropout_rate
        self.caption_prefix = caption_prefix
        self.caption_suffix = caption_suffix

        self.token_warmup_min = token_warmup_min  # step=0におけるタグの数
        self.token_warmup_step = token_warmup_step  # N(N<1ならN*max_train_steps)ステップ目でタグの数が最大になる

        self.img_count = 0


class DreamBoothSubset(BaseSubset):
    def __init__(
        self,
        image_dir: str,
        is_reg: bool,
        class_tokens: Optional[str],
        caption_extension: str,
        cache_info: bool,
        num_repeats,
        shuffle_caption,
        caption_separator: str,
        keep_tokens,
        keep_tokens_separator,
        secondary_separator,
        enable_wildcard,
        color_aug,
        flip_aug,
        face_crop_aug_range,
        random_crop,
        caption_dropout_rate,
        caption_dropout_every_n_epochs,
        caption_tag_dropout_rate,
        caption_prefix,
        caption_suffix,
        token_warmup_min,
        token_warmup_step,
    ) -> None:
        assert image_dir is not None, "image_dir must be specified / image_dirは指定が必須です"

        super().__init__(
            image_dir,
            num_repeats,
            shuffle_caption,
            caption_separator,
            keep_tokens,
            keep_tokens_separator,
            secondary_separator,
            enable_wildcard,
            color_aug,
            flip_aug,
            face_crop_aug_range,
            random_crop,
            caption_dropout_rate,
            caption_dropout_every_n_epochs,
            caption_tag_dropout_rate,
            caption_prefix,
            caption_suffix,
            token_warmup_min,
            token_warmup_step,
        )

        self.is_reg = is_reg
        self.class_tokens = class_tokens
        self.caption_extension = caption_extension
        if self.caption_extension and not self.caption_extension.startswith("."):
            self.caption_extension = "." + self.caption_extension
        self.cache_info = cache_info

    def __eq__(self, other) -> bool:
        if not isinstance(other, DreamBoothSubset):
            return NotImplemented
        return self.image_dir == other.image_dir


class FineTuningSubset(BaseSubset):
    def __init__(
        self,
        image_dir,
        metadata_file: str,
        num_repeats,
        shuffle_caption,
        caption_separator,
        keep_tokens,
        keep_tokens_separator,
        secondary_separator,
        enable_wildcard,
        color_aug,
        flip_aug,
        face_crop_aug_range,
        random_crop,
        caption_dropout_rate,
        caption_dropout_every_n_epochs,
        caption_tag_dropout_rate,
        caption_prefix,
        caption_suffix,
        token_warmup_min,
        token_warmup_step,
    ) -> None:
        assert metadata_file is not None, "metadata_file must be specified / metadata_fileは指定が必須です"

        super().__init__(
            image_dir,
            num_repeats,
            shuffle_caption,
            caption_separator,
            keep_tokens,
            keep_tokens_separator,
            secondary_separator,
            enable_wildcard,
            color_aug,
            flip_aug,
            face_crop_aug_range,
            random_crop,
            caption_dropout_rate,
            caption_dropout_every_n_epochs,
            caption_tag_dropout_rate,
            caption_prefix,
            caption_suffix,
            token_warmup_min,
            token_warmup_step,
        )

        self.metadata_file = metadata_file

    def __eq__(self, other) -> bool:
        if not isinstance(other, FineTuningSubset):
            return NotImplemented
        return self.metadata_file == other.metadata_file


class ControlNetSubset(BaseSubset):
    def __init__(
        self,
        image_dir: str,
        conditioning_data_dir: str,
        caption_extension: str,
        cache_info: bool,
        num_repeats,
        shuffle_caption,
        caption_separator,
        keep_tokens,
        keep_tokens_separator,
        secondary_separator,
        enable_wildcard,
        color_aug,
        flip_aug,
        face_crop_aug_range,
        random_crop,
        caption_dropout_rate,
        caption_dropout_every_n_epochs,
        caption_tag_dropout_rate,
        caption_prefix,
        caption_suffix,
        token_warmup_min,
        token_warmup_step,
    ) -> None:
        assert image_dir is not None, "image_dir must be specified / image_dirは指定が必須です"

        super().__init__(
            image_dir,
            num_repeats,
            shuffle_caption,
            caption_separator,
            keep_tokens,
            keep_tokens_separator,
            secondary_separator,
            enable_wildcard,
            color_aug,
            flip_aug,
            face_crop_aug_range,
            random_crop,
            caption_dropout_rate,
            caption_dropout_every_n_epochs,
            caption_tag_dropout_rate,
            caption_prefix,
            caption_suffix,
            token_warmup_min,
            token_warmup_step,
        )

        self.conditioning_data_dir = conditioning_data_dir
        self.caption_extension = caption_extension
        if self.caption_extension and not self.caption_extension.startswith("."):
            self.caption_extension = "." + self.caption_extension
        self.cache_info = cache_info

    def __eq__(self, other) -> bool:
        if not isinstance(other, ControlNetSubset):
            return NotImplemented
        return self.image_dir == other.image_dir and self.conditioning_data_dir == other.conditioning_data_dir


class BaseDataset(torch.utils.data.Dataset):
    def __init__(
        self,
        tokenizer: Union[CLIPTokenizer, List[CLIPTokenizer]],
        max_token_length: int,
        resolution: Optional[Tuple[int, int]],
        network_multiplier: float,
        debug_dataset: bool,
    ) -> None:
        super().__init__()

        self.tokenizers = tokenizer if isinstance(tokenizer, list) else [tokenizer]

        self.max_token_length = max_token_length
        # width/height is used when enable_bucket==False
        self.width, self.height = (None, None) if resolution is None else resolution
        self.network_multiplier = network_multiplier
        self.debug_dataset = debug_dataset

        self.subsets: List[Union[DreamBoothSubset, FineTuningSubset]] = []

        self.token_padding_disabled = False
        self.tag_frequency = {}
        self.XTI_layers = None
        self.token_strings = None

        self.enable_bucket = False
        self.bucket_manager: BucketManager = None  # not initialized
        self.min_bucket_reso = None
        self.max_bucket_reso = None
        self.bucket_reso_steps = None
        self.bucket_no_upscale = None
        self.bucket_info = None  # for metadata

        self.tokenizer_max_length = self.tokenizers[0].model_max_length if max_token_length is None else max_token_length + 2

        self.current_epoch: int = 0  # インスタンスがepochごとに新しく作られるようなので外側から渡さないとダメ

        self.current_step: int = 0
        self.max_train_steps: int = 0
        self.seed: int = 0

        # augmentation
        self.aug_helper = AugHelper()

        self.image_transforms = IMAGE_TRANSFORMS

        self.image_data: Dict[str, ImageInfo] = {}
        self.image_to_subset: Dict[str, Union[DreamBoothSubset, FineTuningSubset]] = {}

        self.replacements = {}

        # caching
        self.caching_mode = None  # None, 'latents', 'text'

    def set_seed(self, seed):
        self.seed = seed

    def set_caching_mode(self, mode):
        self.caching_mode = mode

    def set_current_epoch(self, epoch):
        if not self.current_epoch == epoch:  # epochが切り替わったらバケツをシャッフルする
            self.shuffle_buckets()
        self.current_epoch = epoch

    def set_current_step(self, step):
        self.current_step = step

    def set_max_train_steps(self, max_train_steps):
        self.max_train_steps = max_train_steps

    def set_tag_frequency(self, dir_name, captions):
        frequency_for_dir = self.tag_frequency.get(dir_name, {})
        self.tag_frequency[dir_name] = frequency_for_dir
        for caption in captions:
            for tag in caption.split(","):
                tag = tag.strip()
                if tag:
                    tag = tag.lower()
                    frequency = frequency_for_dir.get(tag, 0)
                    frequency_for_dir[tag] = frequency + 1

    def disable_token_padding(self):
        self.token_padding_disabled = True

    def enable_XTI(self, layers=None, token_strings=None):
        self.XTI_layers = layers
        self.token_strings = token_strings

    def add_replacement(self, str_from, str_to):
        self.replacements[str_from] = str_to

    def process_caption(self, subset: BaseSubset, caption):
        # caption に prefix/suffix を付ける
        if subset.caption_prefix:
            caption = subset.caption_prefix + " " + caption
        if subset.caption_suffix:
            caption = caption + " " + subset.caption_suffix

        # dropoutの決定:tag dropがこのメソッド内にあるのでここで行うのが良い
        is_drop_out = subset.caption_dropout_rate > 0 and random.random() < subset.caption_dropout_rate
        is_drop_out = (
            is_drop_out
            or subset.caption_dropout_every_n_epochs > 0
            and self.current_epoch % subset.caption_dropout_every_n_epochs == 0
        )

        if is_drop_out:
            caption = ""
        else:
            # process wildcards
            if subset.enable_wildcard:
                # if caption is multiline, random choice one line
                if "\n" in caption:
                    caption = random.choice(caption.split("\n"))

                # wildcard is like '{aaa|bbb|ccc...}'
                # escape the curly braces like {{ or }}
                replacer1 = "⦅"
                replacer2 = "⦆"
                while replacer1 in caption or replacer2 in caption:
                    replacer1 += "⦅"
                    replacer2 += "⦆"

                caption = caption.replace("{{", replacer1).replace("}}", replacer2)

                # replace the wildcard
                def replace_wildcard(match):
                    return random.choice(match.group(1).split("|"))

                caption = re.sub(r"\{([^}]+)\}", replace_wildcard, caption)

                # unescape the curly braces
                caption = caption.replace(replacer1, "{").replace(replacer2, "}")
            else:
                # if caption is multiline, use the first line
                caption = caption.split("\n")[0]

            if subset.shuffle_caption or subset.token_warmup_step > 0 or subset.caption_tag_dropout_rate > 0:
                fixed_tokens = []
                flex_tokens = []
                fixed_suffix_tokens = []
                if (
                    hasattr(subset, "keep_tokens_separator")
                    and subset.keep_tokens_separator
                    and subset.keep_tokens_separator in caption
                ):
                    fixed_part, flex_part = caption.split(subset.keep_tokens_separator, 1)
                    if subset.keep_tokens_separator in flex_part:
                        flex_part, fixed_suffix_part = flex_part.split(subset.keep_tokens_separator, 1)
                        fixed_suffix_tokens = [t.strip() for t in fixed_suffix_part.split(subset.caption_separator) if t.strip()]

                    fixed_tokens = [t.strip() for t in fixed_part.split(subset.caption_separator) if t.strip()]
                    flex_tokens = [t.strip() for t in flex_part.split(subset.caption_separator) if t.strip()]
                else:
                    tokens = [t.strip() for t in caption.strip().split(subset.caption_separator)]
                    flex_tokens = tokens[:]
                    if subset.keep_tokens > 0:
                        fixed_tokens = flex_tokens[: subset.keep_tokens]
                        flex_tokens = tokens[subset.keep_tokens :]

                if subset.token_warmup_step < 1:  # 初回に上書きする
                    subset.token_warmup_step = math.floor(subset.token_warmup_step * self.max_train_steps)
                if subset.token_warmup_step and self.current_step < subset.token_warmup_step:
                    tokens_len = (
                        math.floor(
                            (self.current_step) * ((len(flex_tokens) - subset.token_warmup_min) / (subset.token_warmup_step))
                        )
                        + subset.token_warmup_min
                    )
                    flex_tokens = flex_tokens[:tokens_len]

                def dropout_tags(tokens):
                    if subset.caption_tag_dropout_rate <= 0:
                        return tokens
                    l = []
                    for token in tokens:
                        if random.random() >= subset.caption_tag_dropout_rate:
                            l.append(token)
                    return l

                if subset.shuffle_caption:
                    random.shuffle(flex_tokens)

                flex_tokens = dropout_tags(flex_tokens)

                caption = ", ".join(fixed_tokens + flex_tokens + fixed_suffix_tokens)

            # process secondary separator
            if subset.secondary_separator:
                caption = caption.replace(subset.secondary_separator, subset.caption_separator)

            # textual inversion対応
            for str_from, str_to in self.replacements.items():
                if str_from == "":
                    # replace all
                    if type(str_to) == list:
                        caption = random.choice(str_to)
                    else:
                        caption = str_to
                else:
                    caption = caption.replace(str_from, str_to)

        return caption

    def get_input_ids(self, caption, tokenizer=None):
        if tokenizer is None:
            tokenizer = self.tokenizers[0]

        input_ids = tokenizer(
            caption, padding="max_length", truncation=True, max_length=self.tokenizer_max_length, return_tensors="pt"
        ).input_ids

        if self.tokenizer_max_length > tokenizer.model_max_length:
            input_ids = input_ids.squeeze(0)
            iids_list = []
            if tokenizer.pad_token_id == tokenizer.eos_token_id:
                # v1
                # 77以上の時は "<BOS> .... <EOS> <EOS> <EOS>" でトータル227とかになっているので、"<BOS>...<EOS>"の三連に変換する
                # 1111氏のやつは , で区切る、とかしているようだが とりあえず単純に
                for i in range(
                    1, self.tokenizer_max_length - tokenizer.model_max_length + 2, tokenizer.model_max_length - 2
                ):  # (1, 152, 75)
                    ids_chunk = (
                        input_ids[0].unsqueeze(0),
                        input_ids[i : i + tokenizer.model_max_length - 2],
                        input_ids[-1].unsqueeze(0),
                    )
                    ids_chunk = torch.cat(ids_chunk)
                    iids_list.append(ids_chunk)
            else:
                # v2 or SDXL
                # 77以上の時は "<BOS> .... <EOS> <PAD> <PAD>..." でトータル227とかになっているので、"<BOS>...<EOS> <PAD> <PAD> ..."の三連に変換する
                for i in range(1, self.tokenizer_max_length - tokenizer.model_max_length + 2, tokenizer.model_max_length - 2):
                    ids_chunk = (
                        input_ids[0].unsqueeze(0),  # BOS
                        input_ids[i : i + tokenizer.model_max_length - 2],
                        input_ids[-1].unsqueeze(0),
                    )  # PAD or EOS
                    ids_chunk = torch.cat(ids_chunk)

                    # 末尾が <EOS> <PAD> または <PAD> <PAD> の場合は、何もしなくてよい
                    # 末尾が x <PAD/EOS> の場合は末尾を <EOS> に変える(x <EOS> なら結果的に変化なし)
                    if ids_chunk[-2] != tokenizer.eos_token_id and ids_chunk[-2] != tokenizer.pad_token_id:
                        ids_chunk[-1] = tokenizer.eos_token_id
                    # 先頭が <BOS> <PAD> ... の場合は <BOS> <EOS> <PAD> ... に変える
                    if ids_chunk[1] == tokenizer.pad_token_id:
                        ids_chunk[1] = tokenizer.eos_token_id

                    iids_list.append(ids_chunk)

            input_ids = torch.stack(iids_list)  # 3,77
        return input_ids

    def register_image(self, info: ImageInfo, subset: BaseSubset):
        self.image_data[info.image_key] = info
        self.image_to_subset[info.image_key] = subset

    def make_buckets(self):
        """
        bucketingを行わない場合も呼び出し必須(ひとつだけbucketを作る)
        min_size and max_size are ignored when enable_bucket is False
        """
        logger.info("loading image sizes.")
        for info in tqdm(self.image_data.values()):
            if info.image_size is None:
                info.image_size = self.get_image_size(info.absolute_path)

        if self.enable_bucket:
            logger.info("make buckets")
        else:
            logger.info("prepare dataset")

        # bucketを作成し、画像をbucketに振り分ける
        if self.enable_bucket:
            if self.bucket_manager is None:  # fine tuningの場合でmetadataに定義がある場合は、すでに初期化済み
                self.bucket_manager = BucketManager(
                    self.bucket_no_upscale,
                    (self.width, self.height),
                    self.min_bucket_reso,
                    self.max_bucket_reso,
                    self.bucket_reso_steps,
                )
                if not self.bucket_no_upscale:
                    self.bucket_manager.make_buckets()
                else:
                    logger.warning(
                        "min_bucket_reso and max_bucket_reso are ignored if bucket_no_upscale is set, because bucket reso is defined by image size automatically / bucket_no_upscaleが指定された場合は、bucketの解像度は画像サイズから自動計算されるため、min_bucket_resoとmax_bucket_resoは無視されます"
                    )

            img_ar_errors = []
            for image_info in self.image_data.values():
                image_width, image_height = image_info.image_size
                image_info.bucket_reso, image_info.resized_size, ar_error = self.bucket_manager.select_bucket(
                    image_width, image_height
                )

                # logger.info(image_info.image_key, image_info.bucket_reso)
                img_ar_errors.append(abs(ar_error))

            self.bucket_manager.sort()
        else:
            self.bucket_manager = BucketManager(False, (self.width, self.height), None, None, None)
            self.bucket_manager.set_predefined_resos([(self.width, self.height)])  # ひとつの固定サイズbucketのみ
            for image_info in self.image_data.values():
                image_width, image_height = image_info.image_size
                image_info.bucket_reso, image_info.resized_size, _ = self.bucket_manager.select_bucket(image_width, image_height)

        for image_info in self.image_data.values():
            for _ in range(image_info.num_repeats):
                self.bucket_manager.add_image(image_info.bucket_reso, image_info.image_key)

        # bucket情報を表示、格納する
        if self.enable_bucket:
            self.bucket_info = {"buckets": {}}
            logger.info("number of images (including repeats) / 各bucketの画像枚数(繰り返し回数を含む)")
            for i, (reso, bucket) in enumerate(zip(self.bucket_manager.resos, self.bucket_manager.buckets)):
                count = len(bucket)
                if count > 0:
                    self.bucket_info["buckets"][i] = {"resolution": reso, "count": len(bucket)}
                    logger.info(f"bucket {i}: resolution {reso}, count: {len(bucket)}")

            img_ar_errors = np.array(img_ar_errors)
            mean_img_ar_error = np.mean(np.abs(img_ar_errors))
            self.bucket_info["mean_img_ar_error"] = mean_img_ar_error
            logger.info(f"mean ar error (without repeats): {mean_img_ar_error}")

        # データ参照用indexを作る。このindexはdatasetのshuffleに用いられる
        self.buckets_indices: List(BucketBatchIndex) = []
        for bucket_index, bucket in enumerate(self.bucket_manager.buckets):
            batch_count = int(math.ceil(len(bucket) / self.batch_size))
            for batch_index in range(batch_count):
                self.buckets_indices.append(BucketBatchIndex(bucket_index, self.batch_size, batch_index))

            # ↓以下はbucketごとのbatch件数があまりにも増えて混乱を招くので元に戻す
            #  学習時はステップ数がランダムなので、同一画像が同一batch内にあってもそれほど悪影響はないであろう、と考えられる
            #
            # # bucketが細分化されることにより、ひとつのbucketに一種類の画像のみというケースが増え、つまりそれは
            # # ひとつのbatchが同じ画像で占められることになるので、さすがに良くないであろう
            # # そのためバッチサイズを画像種類までに制限する
            # # ただそれでも同一画像が同一バッチに含まれる可能性はあるので、繰り返し回数が少ないほうがshuffleの品質は良くなることは間違いない?
            # # TO DO 正則化画像をepochまたがりで利用する仕組み
            # num_of_image_types = len(set(bucket))
            # bucket_batch_size = min(self.batch_size, num_of_image_types)
            # batch_count = int(math.ceil(len(bucket) / bucket_batch_size))
            # # logger.info(bucket_index, num_of_image_types, bucket_batch_size, batch_count)
            # for batch_index in range(batch_count):
            #   self.buckets_indices.append(BucketBatchIndex(bucket_index, bucket_batch_size, batch_index))
            # ↑ここまで

        self.shuffle_buckets()
        self._length = len(self.buckets_indices)

    def shuffle_buckets(self):
        # set random seed for this epoch
        random.seed(self.seed + self.current_epoch)

        random.shuffle(self.buckets_indices)
        self.bucket_manager.shuffle()

    def verify_bucket_reso_steps(self, min_steps: int):
        assert self.bucket_reso_steps is None or self.bucket_reso_steps % min_steps == 0, (
            f"bucket_reso_steps is {self.bucket_reso_steps}. it must be divisible by {min_steps}.\n"
            + f"bucket_reso_stepsが{self.bucket_reso_steps}です。{min_steps}で割り切れる必要があります"
        )

    def is_latent_cacheable(self):
        return all([not subset.color_aug and not subset.random_crop for subset in self.subsets])

    def is_text_encoder_output_cacheable(self):
        return all(
            [
                not (
                    subset.caption_dropout_rate > 0
                    or subset.shuffle_caption
                    or subset.token_warmup_step > 0
                    or subset.caption_tag_dropout_rate > 0
                )
                for subset in self.subsets
            ]
        )

    def cache_latents(self, vae, vae_batch_size=1, cache_to_disk=False, is_main_process=True):
        # マルチGPUには対応していないので、そちらはtools/cache_latents.pyを使うこと
        logger.info("caching latents.")

        image_infos = list(self.image_data.values())

        # sort by resolution
        image_infos.sort(key=lambda info: info.bucket_reso[0] * info.bucket_reso[1])

        # split by resolution
        batches = []
        batch = []
        logger.info("checking cache validity...")
        for info in tqdm(image_infos):
            subset = self.image_to_subset[info.image_key]

            if info.latents_npz is not None:  # fine tuning dataset
                continue

            # check disk cache exists and size of latents
            if cache_to_disk:
                info.latents_npz = os.path.splitext(info.absolute_path)[0] + ".npz"
                if not is_main_process:  # store to info only
                    continue

                cache_available = is_disk_cached_latents_is_expected(info.bucket_reso, info.latents_npz, subset.flip_aug)

                if cache_available:  # do not add to batch
                    continue

            # if last member of batch has different resolution, flush the batch
            if len(batch) > 0 and batch[-1].bucket_reso != info.bucket_reso:
                batches.append(batch)
                batch = []

            batch.append(info)

            # if number of data in batch is enough, flush the batch
            if len(batch) >= vae_batch_size:
                batches.append(batch)
                batch = []

        if len(batch) > 0:
            batches.append(batch)

        if cache_to_disk and not is_main_process:  # if cache to disk, don't cache latents in non-main process, set to info only
            return

        # iterate batches: batch doesn't have image, image will be loaded in cache_batch_latents and discarded
        logger.info("caching latents...")
        for batch in tqdm(batches, smoothing=1, total=len(batches)):
            cache_batch_latents(vae, cache_to_disk, batch, subset.flip_aug, subset.random_crop)

    # weight_dtypeを指定するとText Encoderそのもの、およひ出力がweight_dtypeになる
    # SDXLでのみ有効だが、datasetのメソッドとする必要があるので、sdxl_train_util.pyではなくこちらに実装する
    # SD1/2に対応するにはv2のフラグを持つ必要があるので後回し
    def cache_text_encoder_outputs(
        self, tokenizers, text_encoders, device, weight_dtype, cache_to_disk=False, is_main_process=True
    ):
        assert len(tokenizers) == 2, "only support SDXL"

        # latentsのキャッシュと同様に、ディスクへのキャッシュに対応する
        # またマルチGPUには対応していないので、そちらはtools/cache_latents.pyを使うこと
        logger.info("caching text encoder outputs.")
        image_infos = list(self.image_data.values())

        logger.info("checking cache existence...")
        image_infos_to_cache = []
        for info in tqdm(image_infos):
            # subset = self.image_to_subset[info.image_key]
            if cache_to_disk:
                te_out_npz = os.path.splitext(info.absolute_path)[0] + TEXT_ENCODER_OUTPUTS_CACHE_SUFFIX
                info.text_encoder_outputs_npz = te_out_npz

                if not is_main_process:  # store to info only
                    continue

                if os.path.exists(te_out_npz):
                    continue

            image_infos_to_cache.append(info)

        if cache_to_disk and not is_main_process:  # if cache to disk, don't cache latents in non-main process, set to info only
            return

        # prepare tokenizers and text encoders
        for text_encoder in text_encoders:
            text_encoder.to(device)
            if weight_dtype is not None:
                text_encoder.to(dtype=weight_dtype)

        # create batch
        batch = []
        batches = []
        for info in image_infos_to_cache:
            input_ids1 = self.get_input_ids(info.caption, tokenizers[0])
            input_ids2 = self.get_input_ids(info.caption, tokenizers[1])
            batch.append((info, input_ids1, input_ids2))

            if len(batch) >= self.batch_size:
                batches.append(batch)
                batch = []

        if len(batch) > 0:
            batches.append(batch)

        # iterate batches: call text encoder and cache outputs for memory or disk
        logger.info("caching text encoder outputs...")
        for batch in tqdm(batches):
            infos, input_ids1, input_ids2 = zip(*batch)
            input_ids1 = torch.stack(input_ids1, dim=0)
            input_ids2 = torch.stack(input_ids2, dim=0)
            cache_batch_text_encoder_outputs(
                infos, tokenizers, text_encoders, self.max_token_length, cache_to_disk, input_ids1, input_ids2, weight_dtype
            )

    def get_image_size(self, image_path):
        return imagesize.get(image_path)

    def load_image_with_face_info(self, subset: BaseSubset, image_path: str):
        img = load_image(image_path)

        face_cx = face_cy = face_w = face_h = 0
        if subset.face_crop_aug_range is not None:
            tokens = os.path.splitext(os.path.basename(image_path))[0].split("_")
            if len(tokens) >= 5:
                face_cx = int(tokens[-4])
                face_cy = int(tokens[-3])
                face_w = int(tokens[-2])
                face_h = int(tokens[-1])

        return img, face_cx, face_cy, face_w, face_h

    # いい感じに切り出す
    def crop_target(self, subset: BaseSubset, image, face_cx, face_cy, face_w, face_h):
        height, width = image.shape[0:2]
        if height == self.height and width == self.width:
            return image

        # 画像サイズはsizeより大きいのでリサイズする
        face_size = max(face_w, face_h)
        size = min(self.height, self.width)  # 短いほう
        min_scale = max(self.height / height, self.width / width)  # 画像がモデル入力サイズぴったりになる倍率(最小の倍率)
        min_scale = min(1.0, max(min_scale, size / (face_size * subset.face_crop_aug_range[1])))  # 指定した顔最小サイズ
        max_scale = min(1.0, max(min_scale, size / (face_size * subset.face_crop_aug_range[0])))  # 指定した顔最大サイズ
        if min_scale >= max_scale:  # range指定がmin==max
            scale = min_scale
        else:
            scale = random.uniform(min_scale, max_scale)

        nh = int(height * scale + 0.5)
        nw = int(width * scale + 0.5)
        assert nh >= self.height and nw >= self.width, f"internal error. small scale {scale}, {width}*{height}"
        image = cv2.resize(image, (nw, nh), interpolation=cv2.INTER_AREA)
        face_cx = int(face_cx * scale + 0.5)
        face_cy = int(face_cy * scale + 0.5)
        height, width = nh, nw

        # 顔を中心として448*640とかへ切り出す
        for axis, (target_size, length, face_p) in enumerate(zip((self.height, self.width), (height, width), (face_cy, face_cx))):
            p1 = face_p - target_size // 2  # 顔を中心に持ってくるための切り出し位置

            if subset.random_crop:
                # 背景も含めるために顔を中心に置く確率を高めつつずらす
                range = max(length - face_p, face_p)  # 画像の端から顔中心までの距離の長いほう
                p1 = p1 + (random.randint(0, range) + random.randint(0, range)) - range  # -range ~ +range までのいい感じの乱数
            else:
                # range指定があるときのみ、すこしだけランダムに(わりと適当)
                if subset.face_crop_aug_range[0] != subset.face_crop_aug_range[1]:
                    if face_size > size // 10 and face_size >= 40:
                        p1 = p1 + random.randint(-face_size // 20, +face_size // 20)

            p1 = max(0, min(p1, length - target_size))

            if axis == 0:
                image = image[p1 : p1 + target_size, :]
            else:
                image = image[:, p1 : p1 + target_size]

        return image

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        bucket = self.bucket_manager.buckets[self.buckets_indices[index].bucket_index]
        bucket_batch_size = self.buckets_indices[index].bucket_batch_size
        image_index = self.buckets_indices[index].batch_index * bucket_batch_size

        if self.caching_mode is not None:  # return batch for latents/text encoder outputs caching
            return self.get_item_for_caching(bucket, bucket_batch_size, image_index)

        loss_weights = []
        captions = []
        input_ids_list = []
        input_ids2_list = []
        latents_list = []
        images = []
        original_sizes_hw = []
        crop_top_lefts = []
        target_sizes_hw = []
        flippeds = []  # 変数名が微妙
        text_encoder_outputs1_list = []
        text_encoder_outputs2_list = []
        text_encoder_pool2_list = []

        for image_key in bucket[image_index : image_index + bucket_batch_size]:
            image_info = self.image_data[image_key]
            subset = self.image_to_subset[image_key]
            loss_weights.append(
                self.prior_loss_weight if image_info.is_reg else 1.0
            )  # in case of fine tuning, is_reg is always False

            flipped = subset.flip_aug and random.random() < 0.5  # not flipped or flipped with 50% chance

            # image/latentsを処理する
            if image_info.latents is not None:  # cache_latents=Trueの場合
                original_size = image_info.latents_original_size
                crop_ltrb = image_info.latents_crop_ltrb  # calc values later if flipped
                if not flipped:
                    latents = image_info.latents
                else:
                    latents = image_info.latents_flipped

                image = None
            elif image_info.latents_npz is not None:  # FineTuningDatasetまたはcache_latents_to_disk=Trueの場合
                latents, original_size, crop_ltrb, flipped_latents = load_latents_from_disk(image_info.latents_npz)
                if flipped:
                    latents = flipped_latents
                    del flipped_latents
                latents = torch.FloatTensor(latents)

                image = None
            else:
                # 画像を読み込み、必要ならcropする
                img, face_cx, face_cy, face_w, face_h = self.load_image_with_face_info(subset, image_info.absolute_path)
                im_h, im_w = img.shape[0:2]

                if self.enable_bucket:
                    img, original_size, crop_ltrb = trim_and_resize_if_required(
                        subset.random_crop, img, image_info.bucket_reso, image_info.resized_size
                    )
                else:
                    if face_cx > 0:  # 顔位置情報あり
                        img = self.crop_target(subset, img, face_cx, face_cy, face_w, face_h)
                    elif im_h > self.height or im_w > self.width:
                        assert (
                            subset.random_crop
                        ), f"image too large, but cropping and bucketing are disabled / 画像サイズが大きいのでface_crop_aug_rangeかrandom_crop、またはbucketを有効にしてください: {image_info.absolute_path}"
                        if im_h > self.height:
                            p = random.randint(0, im_h - self.height)
                            img = img[p : p + self.height]
                        if im_w > self.width:
                            p = random.randint(0, im_w - self.width)
                            img = img[:, p : p + self.width]

                    im_h, im_w = img.shape[0:2]
                    assert (
                        im_h == self.height and im_w == self.width
                    ), f"image size is small / 画像サイズが小さいようです: {image_info.absolute_path}"

                    original_size = [im_w, im_h]
                    crop_ltrb = (0, 0, 0, 0)

                # augmentation
                aug = self.aug_helper.get_augmentor(subset.color_aug)
                if aug is not None:
                    img = aug(image=img)["image"]

                if flipped:
                    img = img[:, ::-1, :].copy()  # copy to avoid negative stride problem

                latents = None
                image = self.image_transforms(img)  # -1.0~1.0のtorch.Tensorになる

            images.append(image)
            latents_list.append(latents)

            target_size = (image.shape[2], image.shape[1]) if image is not None else (latents.shape[2] * 8, latents.shape[1] * 8)

            if not flipped:
                crop_left_top = (crop_ltrb[0], crop_ltrb[1])
            else:
                # crop_ltrb[2] is right, so target_size[0] - crop_ltrb[2] is left in flipped image
                crop_left_top = (target_size[0] - crop_ltrb[2], crop_ltrb[1])

            original_sizes_hw.append((int(original_size[1]), int(original_size[0])))
            crop_top_lefts.append((int(crop_left_top[1]), int(crop_left_top[0])))
            target_sizes_hw.append((int(target_size[1]), int(target_size[0])))
            flippeds.append(flipped)

            # captionとtext encoder outputを処理する
            caption = image_info.caption  # default
            if image_info.text_encoder_outputs1 is not None:
                text_encoder_outputs1_list.append(image_info.text_encoder_outputs1)
                text_encoder_outputs2_list.append(image_info.text_encoder_outputs2)
                text_encoder_pool2_list.append(image_info.text_encoder_pool2)
                captions.append(caption)
            elif image_info.text_encoder_outputs_npz is not None:
                text_encoder_outputs1, text_encoder_outputs2, text_encoder_pool2 = load_text_encoder_outputs_from_disk(
                    image_info.text_encoder_outputs_npz
                )
                text_encoder_outputs1_list.append(text_encoder_outputs1)
                text_encoder_outputs2_list.append(text_encoder_outputs2)
                text_encoder_pool2_list.append(text_encoder_pool2)
                captions.append(caption)
            else:
                caption = self.process_caption(subset, image_info.caption)
                if self.XTI_layers:
                    caption_layer = []
                    for layer in self.XTI_layers:
                        token_strings_from = " ".join(self.token_strings)
                        token_strings_to = " ".join([f"{x}_{layer}" for x in self.token_strings])
                        caption_ = caption.replace(token_strings_from, token_strings_to)
                        caption_layer.append(caption_)
                    captions.append(caption_layer)
                else:
                    captions.append(caption)

                if not self.token_padding_disabled:  # this option might be omitted in future
                    if self.XTI_layers:
                        token_caption = self.get_input_ids(caption_layer, self.tokenizers[0])
                    else:
                        token_caption = self.get_input_ids(caption, self.tokenizers[0])
                    input_ids_list.append(token_caption)

                    if len(self.tokenizers) > 1:
                        if self.XTI_layers:
                            token_caption2 = self.get_input_ids(caption_layer, self.tokenizers[1])
                        else:
                            token_caption2 = self.get_input_ids(caption, self.tokenizers[1])
                        input_ids2_list.append(token_caption2)

        example = {}
        example["loss_weights"] = torch.FloatTensor(loss_weights)

        if len(text_encoder_outputs1_list) == 0:
            if self.token_padding_disabled:
                # padding=True means pad in the batch
                example["input_ids"] = self.tokenizer[0](captions, padding=True, truncation=True, return_tensors="pt").input_ids
                if len(self.tokenizers) > 1:
                    example["input_ids2"] = self.tokenizer[1](
                        captions, padding=True, truncation=True, return_tensors="pt"
                    ).input_ids
                else:
                    example["input_ids2"] = None
            else:
                example["input_ids"] = torch.stack(input_ids_list)
                example["input_ids2"] = torch.stack(input_ids2_list) if len(self.tokenizers) > 1 else None
            example["text_encoder_outputs1_list"] = None
            example["text_encoder_outputs2_list"] = None
            example["text_encoder_pool2_list"] = None
        else:
            example["input_ids"] = None
            example["input_ids2"] = None
            # # for assertion
            # example["input_ids"] = torch.stack([self.get_input_ids(cap, self.tokenizers[0]) for cap in captions])
            # example["input_ids2"] = torch.stack([self.get_input_ids(cap, self.tokenizers[1]) for cap in captions])
            example["text_encoder_outputs1_list"] = torch.stack(text_encoder_outputs1_list)
            example["text_encoder_outputs2_list"] = torch.stack(text_encoder_outputs2_list)
            example["text_encoder_pool2_list"] = torch.stack(text_encoder_pool2_list)

        if images[0] is not None:
            images = torch.stack(images)
            images = images.to(memory_format=torch.contiguous_format).float()
        else:
            images = None
        example["images"] = images

        example["latents"] = torch.stack(latents_list) if latents_list[0] is not None else None
        example["captions"] = captions

        example["original_sizes_hw"] = torch.stack([torch.LongTensor(x) for x in original_sizes_hw])
        example["crop_top_lefts"] = torch.stack([torch.LongTensor(x) for x in crop_top_lefts])
        example["target_sizes_hw"] = torch.stack([torch.LongTensor(x) for x in target_sizes_hw])
        example["flippeds"] = flippeds

        example["network_multipliers"] = torch.FloatTensor([self.network_multiplier] * len(captions))

        if self.debug_dataset:
            example["image_keys"] = bucket[image_index : image_index + self.batch_size]
        return example

    def get_item_for_caching(self, bucket, bucket_batch_size, image_index):
        captions = []
        images = []
        input_ids1_list = []
        input_ids2_list = []
        absolute_paths = []
        resized_sizes = []
        bucket_reso = None
        flip_aug = None
        random_crop = None

        for image_key in bucket[image_index : image_index + bucket_batch_size]:
            image_info = self.image_data[image_key]
            subset = self.image_to_subset[image_key]

            if flip_aug is None:
                flip_aug = subset.flip_aug
                random_crop = subset.random_crop
                bucket_reso = image_info.bucket_reso
            else:
                assert flip_aug == subset.flip_aug, "flip_aug must be same in a batch"
                assert random_crop == subset.random_crop, "random_crop must be same in a batch"
                assert bucket_reso == image_info.bucket_reso, "bucket_reso must be same in a batch"

            caption = image_info.caption  # TODO cache some patterns of dropping, shuffling, etc.

            if self.caching_mode == "latents":
                image = load_image(image_info.absolute_path)
            else:
                image = None

            if self.caching_mode == "text":
                input_ids1 = self.get_input_ids(caption, self.tokenizers[0])
                input_ids2 = self.get_input_ids(caption, self.tokenizers[1])
            else:
                input_ids1 = None
                input_ids2 = None

            captions.append(caption)
            images.append(image)
            input_ids1_list.append(input_ids1)
            input_ids2_list.append(input_ids2)
            absolute_paths.append(image_info.absolute_path)
            resized_sizes.append(image_info.resized_size)

        example = {}

        if images[0] is None:
            images = None
        example["images"] = images

        example["captions"] = captions
        example["input_ids1_list"] = input_ids1_list
        example["input_ids2_list"] = input_ids2_list
        example["absolute_paths"] = absolute_paths
        example["resized_sizes"] = resized_sizes
        example["flip_aug"] = flip_aug
        example["random_crop"] = random_crop
        example["bucket_reso"] = bucket_reso
        return example


class DreamBoothDataset(BaseDataset):
    IMAGE_INFO_CACHE_FILE = "metadata_cache.json"

    def __init__(
        self,
        subsets: Sequence[DreamBoothSubset],
        batch_size: int,
        tokenizer,
        max_token_length,
        resolution,
        network_multiplier: float,
        enable_bucket: bool,
        min_bucket_reso: int,
        max_bucket_reso: int,
        bucket_reso_steps: int,
        bucket_no_upscale: bool,
        prior_loss_weight: float,
        debug_dataset: bool,
    ) -> None:
        super().__init__(tokenizer, max_token_length, resolution, network_multiplier, debug_dataset)

        assert resolution is not None, f"resolution is required / resolution(解像度)指定は必須です"

        self.batch_size = batch_size
        self.size = min(self.width, self.height)  # 短いほう
        self.prior_loss_weight = prior_loss_weight
        self.latents_cache = None

        self.enable_bucket = enable_bucket
        if self.enable_bucket:
            assert (
                min(resolution) >= min_bucket_reso
            ), f"min_bucket_reso must be equal or less than resolution / min_bucket_resoは最小解像度より大きくできません。解像度を大きくするかmin_bucket_resoを小さくしてください"
            assert (
                max(resolution) <= max_bucket_reso
            ), f"max_bucket_reso must be equal or greater than resolution / max_bucket_resoは最大解像度より小さくできません。解像度を小さくするかmin_bucket_resoを大きくしてください"
            self.min_bucket_reso = min_bucket_reso
            self.max_bucket_reso = max_bucket_reso
            self.bucket_reso_steps = bucket_reso_steps
            self.bucket_no_upscale = bucket_no_upscale
        else:
            self.min_bucket_reso = None
            self.max_bucket_reso = None
            self.bucket_reso_steps = None  # この情報は使われない
            self.bucket_no_upscale = False

        def read_caption(img_path, caption_extension, enable_wildcard):
            # captionの候補ファイル名を作る
            base_name = os.path.splitext(img_path)[0]
            base_name_face_det = base_name
            tokens = base_name.split("_")
            if len(tokens) >= 5:
                base_name_face_det = "_".join(tokens[:-4])
            cap_paths = [base_name + caption_extension, base_name_face_det + caption_extension]

            caption = None
            for cap_path in cap_paths:
                if os.path.isfile(cap_path):
                    with open(cap_path, "rt", encoding="utf-8") as f:
                        try:
                            lines = f.readlines()
                        except UnicodeDecodeError as e:
                            logger.error(f"illegal char in file (not UTF-8) / ファイルにUTF-8以外の文字があります: {cap_path}")
                            raise e
                        assert len(lines) > 0, f"caption file is empty / キャプションファイルが空です: {cap_path}"
                        if enable_wildcard:
                            caption = "\n".join([line.strip() for line in lines if line.strip() != ""])  # 空行を除く、改行で連結
                        else:
                            caption = lines[0].strip()
                    break
            return caption

        def load_dreambooth_dir(subset: DreamBoothSubset):
            if not os.path.isdir(subset.image_dir):
                logger.warning(f"not directory: {subset.image_dir}")
                return [], []

            info_cache_file = os.path.join(subset.image_dir, self.IMAGE_INFO_CACHE_FILE)
            use_cached_info_for_subset = subset.cache_info
            if use_cached_info_for_subset:
                logger.info(
                    f"using cached image info for this subset / このサブセットで、キャッシュされた画像情報を使います: {info_cache_file}"
                )
                if not os.path.isfile(info_cache_file):
                    logger.warning(
                        f"image info file not found. You can ignore this warning if this is the first time to use this subset"
                        + " / キャッシュファイルが見つかりませんでした。初回実行時はこの警告を無視してください: {metadata_file}"
                    )
                    use_cached_info_for_subset = False

            if use_cached_info_for_subset:
                # json: {`img_path`:{"caption": "caption...", "resolution": [width, height]}, ...}
                with open(info_cache_file, "r", encoding="utf-8") as f:
                    metas = json.load(f)
                img_paths = list(metas.keys())
                sizes = [meta["resolution"] for meta in metas.values()]

                # we may need to check image size and existence of image files, but it takes time, so user should check it before training
            else:
                img_paths = glob_images(subset.image_dir, "*")
                sizes = [None] * len(img_paths)

            logger.info(f"found directory {subset.image_dir} contains {len(img_paths)} image files")

            if use_cached_info_for_subset:
                captions = [meta["caption"] for meta in metas.values()]
                missing_captions = [img_path for img_path, caption in zip(img_paths, captions) if caption is None or caption == ""]
            else:
                # 画像ファイルごとにプロンプトを読み込み、もしあればそちらを使う
                captions = []
                missing_captions = []
                for img_path in img_paths:
                    cap_for_img = read_caption(img_path, subset.caption_extension, subset.enable_wildcard)
                    if cap_for_img is None and subset.class_tokens is None:
                        logger.warning(
                            f"neither caption file nor class tokens are found. use empty caption for {img_path} / キャプションファイルもclass tokenも見つかりませんでした。空のキャプションを使用します: {img_path}"
                        )
                        captions.append("")
                        missing_captions.append(img_path)
                    else:
                        if cap_for_img is None:
                            captions.append(subset.class_tokens)
                            missing_captions.append(img_path)
                        else:
                            captions.append(cap_for_img)

            self.set_tag_frequency(os.path.basename(subset.image_dir), captions)  # タグ頻度を記録

            if missing_captions:
                number_of_missing_captions = len(missing_captions)
                number_of_missing_captions_to_show = 5
                remaining_missing_captions = number_of_missing_captions - number_of_missing_captions_to_show

                logger.warning(
                    f"No caption file found for {number_of_missing_captions} images. Training will continue without captions for these images. If class token exists, it will be used. / {number_of_missing_captions}枚の画像にキャプションファイルが見つかりませんでした。これらの画像についてはキャプションなしで学習を続行します。class tokenが存在する場合はそれを使います。"
                )
                for i, missing_caption in enumerate(missing_captions):
                    if i >= number_of_missing_captions_to_show:
                        logger.warning(missing_caption + f"... and {remaining_missing_captions} more")
                        break
                    logger.warning(missing_caption)

            if not use_cached_info_for_subset and subset.cache_info:
                logger.info(f"cache image info for / 画像情報をキャッシュします : {info_cache_file}")
                sizes = [self.get_image_size(img_path) for img_path in tqdm(img_paths, desc="get image size")]
                matas = {}
                for img_path, caption, size in zip(img_paths, captions, sizes):
                    matas[img_path] = {"caption": caption, "resolution": list(size)}
                with open(info_cache_file, "w", encoding="utf-8") as f:
                    json.dump(matas, f, ensure_ascii=False, indent=2)
                logger.info(f"cache image info done for / 画像情報を出力しました : {info_cache_file}")

            # if sizes are not set, image size will be read in make_buckets
            return img_paths, captions, sizes

        logger.info("prepare images.")
        num_train_images = 0
        num_reg_images = 0
        reg_infos: List[Tuple[ImageInfo, DreamBoothSubset]] = []
        for subset in subsets:
            if subset.num_repeats < 1:
                logger.warning(
                    f"ignore subset with image_dir='{subset.image_dir}': num_repeats is less than 1 / num_repeatsが1を下回っているためサブセットを無視します: {subset.num_repeats}"
                )
                continue

            if subset in self.subsets:
                logger.warning(
                    f"ignore duplicated subset with image_dir='{subset.image_dir}': use the first one / 既にサブセットが登録されているため、重複した後発のサブセットを無視します"
                )
                continue

            img_paths, captions, sizes = load_dreambooth_dir(subset)
            if len(img_paths) < 1:
                logger.warning(
                    f"ignore subset with image_dir='{subset.image_dir}': no images found / 画像が見つからないためサブセットを無視します"
                )
                continue

            if subset.is_reg:
                num_reg_images += subset.num_repeats * len(img_paths)
            else:
                num_train_images += subset.num_repeats * len(img_paths)

            for img_path, caption, size in zip(img_paths, captions, sizes):
                info = ImageInfo(img_path, subset.num_repeats, caption, subset.is_reg, img_path)
                if size is not None:
                    info.image_size = size
                if subset.is_reg:
                    reg_infos.append((info, subset))
                else:
                    self.register_image(info, subset)

            subset.img_count = len(img_paths)
            self.subsets.append(subset)

        logger.info(f"{num_train_images} train images with repeating.")
        self.num_train_images = num_train_images

        logger.info(f"{num_reg_images} reg images.")
        if num_train_images < num_reg_images:
            logger.warning("some of reg images are not used / 正則化画像の数が多いので、一部使用されない正則化画像があります")

        if num_reg_images == 0:
            logger.warning("no regularization images / 正則化画像が見つかりませんでした")
        else:
            # num_repeatsを計算する:どうせ大した数ではないのでループで処理する
            n = 0
            first_loop = True
            while n < num_train_images:
                for info, subset in reg_infos:
                    if first_loop:
                        self.register_image(info, subset)
                        n += info.num_repeats
                    else:
                        info.num_repeats += 1  # rewrite registered info
                        n += 1
                    if n >= num_train_images:
                        break
                first_loop = False

        self.num_reg_images = num_reg_images


class FineTuningDataset(BaseDataset):
    def __init__(
        self,
        subsets: Sequence[FineTuningSubset],
        batch_size: int,
        tokenizer,
        max_token_length,
        resolution,
        network_multiplier: float,
        enable_bucket: bool,
        min_bucket_reso: int,
        max_bucket_reso: int,
        bucket_reso_steps: int,
        bucket_no_upscale: bool,
        debug_dataset: bool,
    ) -> None:
        super().__init__(tokenizer, max_token_length, resolution, network_multiplier, debug_dataset)

        self.batch_size = batch_size

        self.num_train_images = 0
        self.num_reg_images = 0

        for subset in subsets:
            if subset.num_repeats < 1:
                logger.warning(
                    f"ignore subset with metadata_file='{subset.metadata_file}': num_repeats is less than 1 / num_repeatsが1を下回っているためサブセットを無視します: {subset.num_repeats}"
                )
                continue

            if subset in self.subsets:
                logger.warning(
                    f"ignore duplicated subset with metadata_file='{subset.metadata_file}': use the first one / 既にサブセットが登録されているため、重複した後発のサブセットを無視します"
                )
                continue

            # メタデータを読み込む
            if os.path.exists(subset.metadata_file):
                logger.info(f"loading existing metadata: {subset.metadata_file}")
                with open(subset.metadata_file, "rt", encoding="utf-8") as f:
                    metadata = json.load(f)
            else:
                raise ValueError(f"no metadata / メタデータファイルがありません: {subset.metadata_file}")

            if len(metadata) < 1:
                logger.warning(
                    f"ignore subset with '{subset.metadata_file}': no image entries found / 画像に関するデータが見つからないためサブセットを無視します"
                )
                continue

            tags_list = []
            for image_key, img_md in metadata.items():
                # path情報を作る
                abs_path = None

                # まず画像を優先して探す
                if os.path.exists(image_key):
                    abs_path = image_key
                else:
                    # わりといい加減だがいい方法が思いつかん
                    paths = glob_images(subset.image_dir, image_key)
                    if len(paths) > 0:
                        abs_path = paths[0]

                # なければnpzを探す
                if abs_path is None:
                    if os.path.exists(os.path.splitext(image_key)[0] + ".npz"):
                        abs_path = os.path.splitext(image_key)[0] + ".npz"
                    else:
                        npz_path = os.path.join(subset.image_dir, image_key + ".npz")
                        if os.path.exists(npz_path):
                            abs_path = npz_path

                assert abs_path is not None, f"no image / 画像がありません: {image_key}"

                caption = img_md.get("caption")
                tags = img_md.get("tags")
                if caption is None:
                    caption = tags  # could be multiline
                    tags = None

                if subset.enable_wildcard:
                    # tags must be single line
                    if tags is not None:
                        tags = tags.replace("\n", subset.caption_separator)

                    # add tags to each line of caption
                    if caption is not None and tags is not None:
                        caption = "\n".join(
                            [f"{line}{subset.caption_separator}{tags}" for line in caption.split("\n") if line.strip() != ""]
                        )
                else:
                    # use as is
                    if tags is not None and len(tags) > 0:
                        caption = caption + subset.caption_separator + tags
                        tags_list.append(tags)

                if caption is None:
                    caption = ""

                image_info = ImageInfo(image_key, subset.num_repeats, caption, False, abs_path)
                image_info.image_size = img_md.get("train_resolution")

                if not subset.color_aug and not subset.random_crop:
                    # if npz exists, use them
                    image_info.latents_npz, image_info.latents_npz_flipped = self.image_key_to_npz_file(subset, image_key)

                self.register_image(image_info, subset)

            self.num_train_images += len(metadata) * subset.num_repeats

            # TODO do not record tag freq when no tag
            self.set_tag_frequency(os.path.basename(subset.metadata_file), tags_list)
            subset.img_count = len(metadata)
            self.subsets.append(subset)

        # check existence of all npz files
        use_npz_latents = all([not (subset.color_aug or subset.random_crop) for subset in self.subsets])
        if use_npz_latents:
            flip_aug_in_subset = False
            npz_any = False
            npz_all = True

            for image_info in self.image_data.values():
                subset = self.image_to_subset[image_info.image_key]

                has_npz = image_info.latents_npz is not None
                npz_any = npz_any or has_npz

                if subset.flip_aug:
                    has_npz = has_npz and image_info.latents_npz_flipped is not None
                    flip_aug_in_subset = True
                npz_all = npz_all and has_npz

                if npz_any and not npz_all:
                    break

            if not npz_any:
                use_npz_latents = False
                logger.warning(f"npz file does not exist. ignore npz files / npzファイルが見つからないためnpzファイルを無視します")
            elif not npz_all:
                use_npz_latents = False
                logger.warning(
                    f"some of npz file does not exist. ignore npz files / いくつかのnpzファイルが見つからないためnpzファイルを無視します"
                )
                if flip_aug_in_subset:
                    logger.warning("maybe no flipped files / 反転されたnpzファイルがないのかもしれません")
        # else:
        #   logger.info("npz files are not used with color_aug and/or random_crop / color_augまたはrandom_cropが指定されているためnpzファイルは使用されません")

        # check min/max bucket size
        sizes = set()
        resos = set()
        for image_info in self.image_data.values():
            if image_info.image_size is None:
                sizes = None  # not calculated
                break
            sizes.add(image_info.image_size[0])
            sizes.add(image_info.image_size[1])
            resos.add(tuple(image_info.image_size))

        if sizes is None:
            if use_npz_latents:
                use_npz_latents = False
                logger.warning(
                    f"npz files exist, but no bucket info in metadata. ignore npz files / メタデータにbucket情報がないためnpzファイルを無視します"
                )

            assert (
                resolution is not None
            ), "if metadata doesn't have bucket info, resolution is required / メタデータにbucket情報がない場合はresolutionを指定してください"

            self.enable_bucket = enable_bucket
            if self.enable_bucket:
                self.min_bucket_reso = min_bucket_reso
                self.max_bucket_reso = max_bucket_reso
                self.bucket_reso_steps = bucket_reso_steps
                self.bucket_no_upscale = bucket_no_upscale
        else:
            if not enable_bucket:
                logger.info("metadata has bucket info, enable bucketing / メタデータにbucket情報があるためbucketを有効にします")
            logger.info("using bucket info in metadata / メタデータ内のbucket情報を使います")
            self.enable_bucket = True

            assert (
                not bucket_no_upscale
            ), "if metadata has bucket info, bucket reso is precalculated, so bucket_no_upscale cannot be used / メタデータ内にbucket情報がある場合はbucketの解像度は計算済みのため、bucket_no_upscaleは使えません"

            # bucket情報を初期化しておく、make_bucketsで再作成しない
            self.bucket_manager = BucketManager(False, None, None, None, None)
            self.bucket_manager.set_predefined_resos(resos)

        # npz情報をきれいにしておく
        if not use_npz_latents:
            for image_info in self.image_data.values():
                image_info.latents_npz = image_info.latents_npz_flipped = None

    def image_key_to_npz_file(self, subset: FineTuningSubset, image_key):
        base_name = os.path.splitext(image_key)[0]
        npz_file_norm = base_name + ".npz"

        if os.path.exists(npz_file_norm):
            # image_key is full path
            npz_file_flip = base_name + "_flip.npz"
            if not os.path.exists(npz_file_flip):
                npz_file_flip = None
            return npz_file_norm, npz_file_flip

        # if not full path, check image_dir. if image_dir is None, return None
        if subset.image_dir is None:
            return None, None

        # image_key is relative path
        npz_file_norm = os.path.join(subset.image_dir, image_key + ".npz")
        npz_file_flip = os.path.join(subset.image_dir, image_key + "_flip.npz")

        if not os.path.exists(npz_file_norm):
            npz_file_norm = None
            npz_file_flip = None
        elif not os.path.exists(npz_file_flip):
            npz_file_flip = None

        return npz_file_norm, npz_file_flip


class ControlNetDataset(BaseDataset):
    def __init__(
        self,
        subsets: Sequence[ControlNetSubset],
        batch_size: int,
        tokenizer,
        max_token_length,
        resolution,
        network_multiplier: float,
        enable_bucket: bool,
        min_bucket_reso: int,
        max_bucket_reso: int,
        bucket_reso_steps: int,
        bucket_no_upscale: bool,
        debug_dataset: float,
    ) -> None:
        super().__init__(tokenizer, max_token_length, resolution, network_multiplier, debug_dataset)

        db_subsets = []
        for subset in subsets:
            assert (
                not subset.random_crop
            ), "random_crop is not supported in ControlNetDataset / random_cropはControlNetDatasetではサポートされていません"
            db_subset = DreamBoothSubset(
                subset.image_dir,
                False,
                None,
                subset.caption_extension,
                subset.cache_info,
                subset.num_repeats,
                subset.shuffle_caption,
                subset.caption_separator,
                subset.keep_tokens,
                subset.keep_tokens_separator,
                subset.secondary_separator,
                subset.enable_wildcard,
                subset.color_aug,
                subset.flip_aug,
                subset.face_crop_aug_range,
                subset.random_crop,
                subset.caption_dropout_rate,
                subset.caption_dropout_every_n_epochs,
                subset.caption_tag_dropout_rate,
                subset.caption_prefix,
                subset.caption_suffix,
                subset.token_warmup_min,
                subset.token_warmup_step,
            )
            db_subsets.append(db_subset)

        self.dreambooth_dataset_delegate = DreamBoothDataset(
            db_subsets,
            batch_size,
            tokenizer,
            max_token_length,
            resolution,
            network_multiplier,
            enable_bucket,
            min_bucket_reso,
            max_bucket_reso,
            bucket_reso_steps,
            bucket_no_upscale,
            1.0,
            debug_dataset,
        )

        # config_util等から参照される値をいれておく(若干微妙なのでなんとかしたい)
        self.image_data = self.dreambooth_dataset_delegate.image_data
        self.batch_size = batch_size
        self.num_train_images = self.dreambooth_dataset_delegate.num_train_images
        self.num_reg_images = self.dreambooth_dataset_delegate.num_reg_images

        # assert all conditioning data exists
        missing_imgs = []
        cond_imgs_with_pair = set()
        for image_key, info in self.dreambooth_dataset_delegate.image_data.items():
            db_subset = self.dreambooth_dataset_delegate.image_to_subset[image_key]
            subset = None
            for s in subsets:
                if s.image_dir == db_subset.image_dir:
                    subset = s
                    break
            assert subset is not None, "internal error: subset not found"

            if not os.path.isdir(subset.conditioning_data_dir):
                logger.warning(f"not directory: {subset.conditioning_data_dir}")
                continue

            img_basename = os.path.splitext(os.path.basename(info.absolute_path))[0]
            ctrl_img_path = glob_images(subset.conditioning_data_dir, img_basename)
            if len(ctrl_img_path) < 1:
                missing_imgs.append(img_basename)
                continue
            ctrl_img_path = ctrl_img_path[0]
            ctrl_img_path = os.path.abspath(ctrl_img_path)  # normalize path

            info.cond_img_path = ctrl_img_path
            cond_imgs_with_pair.add(os.path.splitext(ctrl_img_path)[0])  # remove extension because Windows is case insensitive

        extra_imgs = []
        for subset in subsets:
            conditioning_img_paths = glob_images(subset.conditioning_data_dir, "*")
            conditioning_img_paths = [os.path.abspath(p) for p in conditioning_img_paths]  # normalize path
            extra_imgs.extend([p for p in conditioning_img_paths if os.path.splitext(p)[0] not in cond_imgs_with_pair])

        assert (
            len(missing_imgs) == 0
        ), f"missing conditioning data for {len(missing_imgs)} images / 制御用画像が見つかりませんでした: {missing_imgs}"
        assert (
            len(extra_imgs) == 0
        ), f"extra conditioning data for {len(extra_imgs)} images / 余分な制御用画像があります: {extra_imgs}"

        self.conditioning_image_transforms = IMAGE_TRANSFORMS

    def make_buckets(self):
        self.dreambooth_dataset_delegate.make_buckets()
        self.bucket_manager = self.dreambooth_dataset_delegate.bucket_manager
        self.buckets_indices = self.dreambooth_dataset_delegate.buckets_indices

    def cache_latents(self, vae, vae_batch_size=1, cache_to_disk=False, is_main_process=True):
        return self.dreambooth_dataset_delegate.cache_latents(vae, vae_batch_size, cache_to_disk, is_main_process)

    def __len__(self):
        return self.dreambooth_dataset_delegate.__len__()

    def __getitem__(self, index):
        example = self.dreambooth_dataset_delegate[index]

        bucket = self.dreambooth_dataset_delegate.bucket_manager.buckets[
            self.dreambooth_dataset_delegate.buckets_indices[index].bucket_index
        ]
        bucket_batch_size = self.dreambooth_dataset_delegate.buckets_indices[index].bucket_batch_size
        image_index = self.dreambooth_dataset_delegate.buckets_indices[index].batch_index * bucket_batch_size

        conditioning_images = []

        for i, image_key in enumerate(bucket[image_index : image_index + bucket_batch_size]):
            image_info = self.dreambooth_dataset_delegate.image_data[image_key]

            target_size_hw = example["target_sizes_hw"][i]
            original_size_hw = example["original_sizes_hw"][i]
            crop_top_left = example["crop_top_lefts"][i]
            flipped = example["flippeds"][i]
            cond_img = load_image(image_info.cond_img_path)

            if self.dreambooth_dataset_delegate.enable_bucket:
                assert (
                    cond_img.shape[0] == original_size_hw[0] and cond_img.shape[1] == original_size_hw[1]
                ), f"size of conditioning image is not match / 画像サイズが合いません: {image_info.absolute_path}"
                cond_img = cv2.resize(
                    cond_img, image_info.resized_size, interpolation=cv2.INTER_AREA
                )  # INTER_AREAでやりたいのでcv2でリサイズ

                # TODO support random crop
                # 現在サポートしているcropはrandomではなく中央のみ
                h, w = target_size_hw
                ct = (cond_img.shape[0] - h) // 2
                cl = (cond_img.shape[1] - w) // 2
                cond_img = cond_img[ct : ct + h, cl : cl + w]
            else:
                # assert (
                #     cond_img.shape[0] == self.height and cond_img.shape[1] == self.width
                # ), f"image size is small / 画像サイズが小さいようです: {image_info.absolute_path}"
                # resize to target
                if cond_img.shape[0] != target_size_hw[0] or cond_img.shape[1] != target_size_hw[1]:
                    cond_img = cv2.resize(
                        cond_img, (int(target_size_hw[1]), int(target_size_hw[0])), interpolation=cv2.INTER_LANCZOS4
                    )

            if flipped:
                cond_img = cond_img[:, ::-1, :].copy()  # copy to avoid negative stride

            cond_img = self.conditioning_image_transforms(cond_img)
            conditioning_images.append(cond_img)

        example["conditioning_images"] = torch.stack(conditioning_images).to(memory_format=torch.contiguous_format).float()

        return example


# behave as Dataset mock
class DatasetGroup(torch.utils.data.ConcatDataset):
    def __init__(self, datasets: Sequence[Union[DreamBoothDataset, FineTuningDataset]]):
        self.datasets: List[Union[DreamBoothDataset, FineTuningDataset]]

        super().__init__(datasets)

        self.image_data = {}
        self.num_train_images = 0
        self.num_reg_images = 0

        # simply concat together
        # TODO: handling image_data key duplication among dataset
        #   In practical, this is not the big issue because image_data is accessed from outside of dataset only for debug_dataset.
        for dataset in datasets:
            self.image_data.update(dataset.image_data)
            self.num_train_images += dataset.num_train_images
            self.num_reg_images += dataset.num_reg_images

    def add_replacement(self, str_from, str_to):
        for dataset in self.datasets:
            dataset.add_replacement(str_from, str_to)

    # def make_buckets(self):
    #   for dataset in self.datasets:
    #     dataset.make_buckets()

    def enable_XTI(self, *args, **kwargs):
        for dataset in self.datasets:
            dataset.enable_XTI(*args, **kwargs)

    def cache_latents(self, vae, vae_batch_size=1, cache_to_disk=False, is_main_process=True):
        for i, dataset in enumerate(self.datasets):
            logger.info(f"[Dataset {i}]")
            dataset.cache_latents(vae, vae_batch_size, cache_to_disk, is_main_process)

    def cache_text_encoder_outputs(
        self, tokenizers, text_encoders, device, weight_dtype, cache_to_disk=False, is_main_process=True
    ):
        for i, dataset in enumerate(self.datasets):
            logger.info(f"[Dataset {i}]")
            dataset.cache_text_encoder_outputs(tokenizers, text_encoders, device, weight_dtype, cache_to_disk, is_main_process)

    def set_caching_mode(self, caching_mode):
        for dataset in self.datasets:
            dataset.set_caching_mode(caching_mode)

    def verify_bucket_reso_steps(self, min_steps: int):
        for dataset in self.datasets:
            dataset.verify_bucket_reso_steps(min_steps)

    def is_latent_cacheable(self) -> bool:
        return all([dataset.is_latent_cacheable() for dataset in self.datasets])

    def is_text_encoder_output_cacheable(self) -> bool:
        return all([dataset.is_text_encoder_output_cacheable() for dataset in self.datasets])

    def set_current_epoch(self, epoch):
        for dataset in self.datasets:
            dataset.set_current_epoch(epoch)

    def set_current_step(self, step):
        for dataset in self.datasets:
            dataset.set_current_step(step)

    def set_max_train_steps(self, max_train_steps):
        for dataset in self.datasets:
            dataset.set_max_train_steps(max_train_steps)

    def disable_token_padding(self):
        for dataset in self.datasets:
            dataset.disable_token_padding()


def is_disk_cached_latents_is_expected(reso, npz_path: str, flip_aug: bool):
    expected_latents_size = (reso[1] // 8, reso[0] // 8)  # bucket_resoはWxHなので注意

    if not os.path.exists(npz_path):
        return False

    npz = np.load(npz_path)
    if "latents" not in npz or "original_size" not in npz or "crop_ltrb" not in npz:  # old ver?
        return False
    if npz["latents"].shape[1:3] != expected_latents_size:
        return False

    if flip_aug:
        if "latents_flipped" not in npz:
            return False
        if npz["latents_flipped"].shape[1:3] != expected_latents_size:
            return False

    return True


# 戻り値は、latents_tensor, (original_size width, original_size height), (crop left, crop top)
def load_latents_from_disk(
    npz_path,
) -> Tuple[Optional[torch.Tensor], Optional[List[int]], Optional[List[int]], Optional[torch.Tensor]]:
    npz = np.load(npz_path)
    if "latents" not in npz:
        raise ValueError(f"error: npz is old format. please re-generate {npz_path}")

    latents = npz["latents"]
    original_size = npz["original_size"].tolist()
    crop_ltrb = npz["crop_ltrb"].tolist()
    flipped_latents = npz["latents_flipped"] if "latents_flipped" in npz else None
    return latents, original_size, crop_ltrb, flipped_latents


def save_latents_to_disk(npz_path, latents_tensor, original_size, crop_ltrb, flipped_latents_tensor=None):
    kwargs = {}
    if flipped_latents_tensor is not None:
        kwargs["latents_flipped"] = flipped_latents_tensor.float().cpu().numpy()
    np.savez(
        npz_path,
        latents=latents_tensor.float().cpu().numpy(),
        original_size=np.array(original_size),
        crop_ltrb=np.array(crop_ltrb),
        **kwargs,
    )


def debug_dataset(train_dataset, show_input_ids=False):
    logger.info(f"Total dataset length (steps) / データセットの長さ(ステップ数): {len(train_dataset)}")
    logger.info(
        "`S` for next step, `E` for next epoch no. , Escape for exit. / Sキーで次のステップ、Eキーで次のエポック、Escキーで中断、終了します"
    )

    epoch = 1
    while True:
        logger.info(f"")
        logger.info(f"epoch: {epoch}")

        steps = (epoch - 1) * len(train_dataset) + 1
        indices = list(range(len(train_dataset)))
        random.shuffle(indices)

        k = 0
        for i, idx in enumerate(indices):
            train_dataset.set_current_epoch(epoch)
            train_dataset.set_current_step(steps)
            logger.info(f"steps: {steps} ({i + 1}/{len(train_dataset)})")

            example = train_dataset[idx]
            if example["latents"] is not None:
                logger.info(f"sample has latents from npz file: {example['latents'].size()}")
            for j, (ik, cap, lw, iid, orgsz, crptl, trgsz, flpdz) in enumerate(
                zip(
                    example["image_keys"],
                    example["captions"],
                    example["loss_weights"],
                    example["input_ids"],
                    example["original_sizes_hw"],
                    example["crop_top_lefts"],
                    example["target_sizes_hw"],
                    example["flippeds"],
                )
            ):
                logger.info(
                    f'{ik}, size: {train_dataset.image_data[ik].image_size}, loss weight: {lw}, caption: "{cap}", original size: {orgsz}, crop top left: {crptl}, target size: {trgsz}, flipped: {flpdz}'
                )
                if "network_multipliers" in example:
                    print(f"network multiplier: {example['network_multipliers'][j]}")

                if show_input_ids:
                    logger.info(f"input ids: {iid}")
                    if "input_ids2" in example:
                        logger.info(f"input ids2: {example['input_ids2'][j]}")
                if example["images"] is not None:
                    im = example["images"][j]
                    logger.info(f"image size: {im.size()}")
                    im = ((im.numpy() + 1.0) * 127.5).astype(np.uint8)
                    im = np.transpose(im, (1, 2, 0))  # c,H,W -> H,W,c
                    im = im[:, :, ::-1]  # RGB -> BGR (OpenCV)

                    if "conditioning_images" in example:
                        cond_img = example["conditioning_images"][j]
                        logger.info(f"conditioning image size: {cond_img.size()}")
                        cond_img = ((cond_img.numpy() + 1.0) * 127.5).astype(np.uint8)
                        cond_img = np.transpose(cond_img, (1, 2, 0))
                        cond_img = cond_img[:, :, ::-1]
                        if os.name == "nt":
                            cv2.imshow("cond_img", cond_img)

                    if os.name == "nt":  # only windows
                        cv2.imshow("img", im)
                        k = cv2.waitKey()
                        cv2.destroyAllWindows()
                    if k == 27 or k == ord("s") or k == ord("e"):
                        break
            steps += 1

            if k == ord("e"):
                break
            if k == 27 or (example["images"] is None and i >= 8):
                k = 27
                break
        if k == 27:
            break

        epoch += 1


def glob_images(directory, base="*"):
    img_paths = []
    for ext in IMAGE_EXTENSIONS:
        if base == "*":
            img_paths.extend(glob.glob(os.path.join(glob.escape(directory), base + ext)))
        else:
            img_paths.extend(glob.glob(glob.escape(os.path.join(directory, base + ext))))
    img_paths = list(set(img_paths))  # 重複を排除
    img_paths.sort()
    return img_paths


def glob_images_pathlib(dir_path, recursive):
    image_paths = []
    if recursive:
        for ext in IMAGE_EXTENSIONS:
            image_paths += list(dir_path.rglob("*" + ext))
    else:
        for ext in IMAGE_EXTENSIONS:
            image_paths += list(dir_path.glob("*" + ext))
    image_paths = list(set(image_paths))  # 重複を排除
    image_paths.sort()
    return image_paths


class MinimalDataset(BaseDataset):
    def __init__(self, tokenizer, max_token_length, resolution, network_multiplier, debug_dataset=False):
        super().__init__(tokenizer, max_token_length, resolution, network_multiplier, debug_dataset)

        self.num_train_images = 0  # update in subclass
        self.num_reg_images = 0  # update in subclass
        self.datasets = [self]
        self.batch_size = 1  # update in subclass

        self.subsets = [self]
        self.num_repeats = 1  # update in subclass if needed
        self.img_count = 1  # update in subclass if needed
        self.bucket_info = {}
        self.is_reg = False
        self.image_dir = "dummy"  # for metadata

    def verify_bucket_reso_steps(self, min_steps: int):
        pass

    def is_latent_cacheable(self) -> bool:
        return False

    def __len__(self):
        raise NotImplementedError

    # override to avoid shuffling buckets
    def set_current_epoch(self, epoch):
        self.current_epoch = epoch

    def __getitem__(self, idx):
        r"""
        The subclass may have image_data for debug_dataset, which is a dict of ImageInfo objects.

        Returns: example like this:

            for i in range(batch_size):
                image_key = ...  # whatever hashable
                image_keys.append(image_key)

                image = ...  # PIL Image
                img_tensor = self.image_transforms(img)
                images.append(img_tensor)

                caption = ...  # str
                input_ids = self.get_input_ids(caption)
                input_ids_list.append(input_ids)

                captions.append(caption)

            images = torch.stack(images, dim=0)
            input_ids_list = torch.stack(input_ids_list, dim=0)
            example = {
                "images": images,
                "input_ids": input_ids_list,
                "captions": captions,   # for debug_dataset
                "latents": None,
                "image_keys": image_keys,   # for debug_dataset
                "loss_weights": torch.ones(batch_size, dtype=torch.float32),
            }
            return example
        """
        raise NotImplementedError


def load_arbitrary_dataset(args, tokenizer) -> MinimalDataset:
    module = ".".join(args.dataset_class.split(".")[:-1])
    dataset_class = args.dataset_class.split(".")[-1]
    module = importlib.import_module(module)
    dataset_class = getattr(module, dataset_class)
    train_dataset_group: MinimalDataset = dataset_class(tokenizer, args.max_token_length, args.resolution, args.debug_dataset)
    return train_dataset_group


def load_image(image_path):
    image = Image.open(image_path)
    if not image.mode == "RGB":
        image = image.convert("RGB")
    img = np.array(image, np.uint8)
    return img


# 画像を読み込む。戻り値はnumpy.ndarray,(original width, original height),(crop left, crop top, crop right, crop bottom)
def trim_and_resize_if_required(
    random_crop: bool, image: Image.Image, reso, resized_size: Tuple[int, int]
) -> Tuple[np.ndarray, Tuple[int, int], Tuple[int, int, int, int]]:
    image_height, image_width = image.shape[0:2]
    original_size = (image_width, image_height)  # size before resize

    if image_width != resized_size[0] or image_height != resized_size[1]:
        # リサイズする
        image = cv2.resize(image, resized_size, interpolation=cv2.INTER_AREA)  # INTER_AREAでやりたいのでcv2でリサイズ

    image_height, image_width = image.shape[0:2]

    if image_width > reso[0]:
        trim_size = image_width - reso[0]
        p = trim_size // 2 if not random_crop else random.randint(0, trim_size)
        # logger.info(f"w {trim_size} {p}")
        image = image[:, p : p + reso[0]]
    if image_height > reso[1]:
        trim_size = image_height - reso[1]
        p = trim_size // 2 if not random_crop else random.randint(0, trim_size)
        # logger.info(f"h {trim_size} {p})
        image = image[p : p + reso[1]]

    # random cropの場合のcropされた値をどうcrop left/topに反映するべきか全くアイデアがない
    # I have no idea how to reflect the cropped value in crop left/top in the case of random crop

    crop_ltrb = BucketManager.get_crop_ltrb(reso, original_size)

    assert image.shape[0] == reso[1] and image.shape[1] == reso[0], f"internal error, illegal trimmed size: {image.shape}, {reso}"
    return image, original_size, crop_ltrb


def cache_batch_latents(
    vae: AutoencoderKL, cache_to_disk: bool, image_infos: List[ImageInfo], flip_aug: bool, random_crop: bool
) -> None:
    r"""
    requires image_infos to have: absolute_path, bucket_reso, resized_size, latents_npz
    optionally requires image_infos to have: image
    if cache_to_disk is True, set info.latents_npz
        flipped latents is also saved if flip_aug is True
    if cache_to_disk is False, set info.latents
        latents_flipped is also set if flip_aug is True
    latents_original_size and latents_crop_ltrb are also set
    """
    images = []
    for info in image_infos:
        image = load_image(info.absolute_path) if info.image is None else np.array(info.image, np.uint8)
        # TODO 画像のメタデータが壊れていて、メタデータから割り当てたbucketと実際の画像サイズが一致しない場合があるのでチェック追加要
        image, original_size, crop_ltrb = trim_and_resize_if_required(random_crop, image, info.bucket_reso, info.resized_size)
        image = IMAGE_TRANSFORMS(image)
        images.append(image)

        info.latents_original_size = original_size
        info.latents_crop_ltrb = crop_ltrb

    img_tensors = torch.stack(images, dim=0)
    img_tensors = img_tensors.to(device=vae.device, dtype=vae.dtype)

    with torch.no_grad():
        latents = vae.encode(img_tensors).latent_dist.sample().to("cpu")

    if flip_aug:
        img_tensors = torch.flip(img_tensors, dims=[3])
        with torch.no_grad():
            flipped_latents = vae.encode(img_tensors).latent_dist.sample().to("cpu")
    else:
        flipped_latents = [None] * len(latents)

    for info, latent, flipped_latent in zip(image_infos, latents, flipped_latents):
        # check NaN
        if torch.isnan(latents).any() or (flipped_latent is not None and torch.isnan(flipped_latent).any()):
            raise RuntimeError(f"NaN detected in latents: {info.absolute_path}")

        if cache_to_disk:
            save_latents_to_disk(info.latents_npz, latent, info.latents_original_size, info.latents_crop_ltrb, flipped_latent)
        else:
            info.latents = latent
            if flip_aug:
                info.latents_flipped = flipped_latent

    if not HIGH_VRAM:
        clean_memory_on_device(vae.device)


def cache_batch_text_encoder_outputs(
    image_infos, tokenizers, text_encoders, max_token_length, cache_to_disk, input_ids1, input_ids2, dtype
):
    input_ids1 = input_ids1.to(text_encoders[0].device)
    input_ids2 = input_ids2.to(text_encoders[1].device)

    with torch.no_grad():
        b_hidden_state1, b_hidden_state2, b_pool2 = get_hidden_states_sdxl(
            max_token_length,
            input_ids1,
            input_ids2,
            tokenizers[0],
            tokenizers[1],
            text_encoders[0],
            text_encoders[1],
            dtype,
        )

        # ここでcpuに移動しておかないと、上書きされてしまう
        b_hidden_state1 = b_hidden_state1.detach().to("cpu")  # b,n*75+2,768
        b_hidden_state2 = b_hidden_state2.detach().to("cpu")  # b,n*75+2,1280
        b_pool2 = b_pool2.detach().to("cpu")  # b,1280

    for info, hidden_state1, hidden_state2, pool2 in zip(image_infos, b_hidden_state1, b_hidden_state2, b_pool2):
        if cache_to_disk:
            save_text_encoder_outputs_to_disk(info.text_encoder_outputs_npz, hidden_state1, hidden_state2, pool2)
        else:
            info.text_encoder_outputs1 = hidden_state1
            info.text_encoder_outputs2 = hidden_state2
            info.text_encoder_pool2 = pool2


def save_text_encoder_outputs_to_disk(npz_path, hidden_state1, hidden_state2, pool2):
    np.savez(
        npz_path,
        hidden_state1=hidden_state1.cpu().float().numpy(),
        hidden_state2=hidden_state2.cpu().float().numpy(),
        pool2=pool2.cpu().float().numpy(),
    )


def load_text_encoder_outputs_from_disk(npz_path):
    with np.load(npz_path) as f:
        hidden_state1 = torch.from_numpy(f["hidden_state1"])
        hidden_state2 = torch.from_numpy(f["hidden_state2"]) if "hidden_state2" in f else None
        pool2 = torch.from_numpy(f["pool2"]) if "pool2" in f else None
    return hidden_state1, hidden_state2, pool2


# endregion

# region モジュール入れ替え部
"""
高速化のためのモジュール入れ替え
"""

# FlashAttentionを使うCrossAttention
# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py
# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE

# constants

EPSILON = 1e-6

# helper functions


def exists(val):
    return val is not None


def default(val, d):
    return val if exists(val) else d


def model_hash(filename):
    """Old model hash used by stable-diffusion-webui"""
    try:
        with open(filename, "rb") as file:
            m = hashlib.sha256()

            file.seek(0x100000)
            m.update(file.read(0x10000))
            return m.hexdigest()[0:8]
    except FileNotFoundError:
        return "NOFILE"
    except IsADirectoryError:  # Linux?
        return "IsADirectory"
    except PermissionError:  # Windows
        return "IsADirectory"


def calculate_sha256(filename):
    """New model hash used by stable-diffusion-webui"""
    try:
        hash_sha256 = hashlib.sha256()
        blksize = 1024 * 1024

        with open(filename, "rb") as f:
            for chunk in iter(lambda: f.read(blksize), b""):
                hash_sha256.update(chunk)

        return hash_sha256.hexdigest()
    except FileNotFoundError:
        return "NOFILE"
    except IsADirectoryError:  # Linux?
        return "IsADirectory"
    except PermissionError:  # Windows
        return "IsADirectory"


def precalculate_safetensors_hashes(tensors, metadata):
    """Precalculate the model hashes needed by sd-webui-additional-networks to
    save time on indexing the model later."""

    # Because writing user metadata to the file can change the result of
    # sd_models.model_hash(), only retain the training metadata for purposes of
    # calculating the hash, as they are meant to be immutable
    metadata = {k: v for k, v in metadata.items() if k.startswith("ss_")}

    bytes = safetensors.torch.save(tensors, metadata)
    b = BytesIO(bytes)

    model_hash = addnet_hash_safetensors(b)
    legacy_hash = addnet_hash_legacy(b)
    return model_hash, legacy_hash


def addnet_hash_legacy(b):
    """Old model hash used by sd-webui-additional-networks for .safetensors format files"""
    m = hashlib.sha256()

    b.seek(0x100000)
    m.update(b.read(0x10000))
    return m.hexdigest()[0:8]


def addnet_hash_safetensors(b):
    """New model hash used by sd-webui-additional-networks for .safetensors format files"""
    hash_sha256 = hashlib.sha256()
    blksize = 1024 * 1024

    b.seek(0)
    header = b.read(8)
    n = int.from_bytes(header, "little")

    offset = n + 8
    b.seek(offset)
    for chunk in iter(lambda: b.read(blksize), b""):
        hash_sha256.update(chunk)

    return hash_sha256.hexdigest()


def get_git_revision_hash() -> str:
    try:
        return subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=os.path.dirname(__file__)).decode("ascii").strip()
    except:
        return "(unknown)"


# def replace_unet_modules(unet: diffusers.models.unet_2d_condition.UNet2DConditionModel, mem_eff_attn, xformers):
#     replace_attentions_for_hypernetwork()
#     # unet is not used currently, but it is here for future use
#     unet.enable_xformers_memory_efficient_attention()
#     return
#     if mem_eff_attn:
#         unet.set_attn_processor(FlashAttnProcessor())
#     elif xformers:
#         unet.enable_xformers_memory_efficient_attention()


# def replace_unet_cross_attn_to_xformers():
#     logger.info("CrossAttention.forward has been replaced to enable xformers.")
#     try:
#         import xformers.ops
#     except ImportError:
#         raise ImportError("No xformers / xformersがインストールされていないようです")

#     def forward_xformers(self, x, context=None, mask=None):
#         h = self.heads
#         q_in = self.to_q(x)

#         context = default(context, x)
#         context = context.to(x.dtype)

#         if hasattr(self, "hypernetwork") and self.hypernetwork is not None:
#             context_k, context_v = self.hypernetwork.forward(x, context)
#             context_k = context_k.to(x.dtype)
#             context_v = context_v.to(x.dtype)
#         else:
#             context_k = context
#             context_v = context

#         k_in = self.to_k(context_k)
#         v_in = self.to_v(context_v)

#         q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b n h d", h=h), (q_in, k_in, v_in))
#         del q_in, k_in, v_in

#         q = q.contiguous()
#         k = k.contiguous()
#         v = v.contiguous()
#         out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)  # 最適なのを選んでくれる

#         out = rearrange(out, "b n h d -> b n (h d)", h=h)

#         # diffusers 0.7.0~
#         out = self.to_out[0](out)
#         out = self.to_out[1](out)
#         return out


#     diffusers.models.attention.CrossAttention.forward = forward_xformers
def replace_unet_modules(unet: UNet2DConditionModel, mem_eff_attn, xformers, sdpa):
    if mem_eff_attn:
        logger.info("Enable memory efficient attention for U-Net")
        unet.set_use_memory_efficient_attention(False, True)
    elif xformers:
        logger.info("Enable xformers for U-Net")
        try:
            import xformers.ops
        except ImportError:
            raise ImportError("No xformers / xformersがインストールされていないようです")

        unet.set_use_memory_efficient_attention(True, False)
    elif sdpa:
        logger.info("Enable SDPA for U-Net")
        unet.set_use_sdpa(True)


"""
def replace_vae_modules(vae: diffusers.models.AutoencoderKL, mem_eff_attn, xformers):
    # vae is not used currently, but it is here for future use
    if mem_eff_attn:
        replace_vae_attn_to_memory_efficient()
    elif xformers:
        # とりあえずDiffusersのxformersを使う。AttentionがあるのはMidBlockのみ
        logger.info("Use Diffusers xformers for VAE")
        vae.encoder.mid_block.attentions[0].set_use_memory_efficient_attention_xformers(True)
        vae.decoder.mid_block.attentions[0].set_use_memory_efficient_attention_xformers(True)


def replace_vae_attn_to_memory_efficient():
    logger.info("AttentionBlock.forward has been replaced to FlashAttention (not xformers)")
    flash_func = FlashAttentionFunction

    def forward_flash_attn(self, hidden_states):
        logger.info("forward_flash_attn")
        q_bucket_size = 512
        k_bucket_size = 1024

        residual = hidden_states
        batch, channel, height, width = hidden_states.shape

        # norm
        hidden_states = self.group_norm(hidden_states)

        hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)

        # proj to q, k, v
        query_proj = self.query(hidden_states)
        key_proj = self.key(hidden_states)
        value_proj = self.value(hidden_states)

        query_proj, key_proj, value_proj = map(
            lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.num_heads), (query_proj, key_proj, value_proj)
        )

        out = flash_func.apply(query_proj, key_proj, value_proj, None, False, q_bucket_size, k_bucket_size)

        out = rearrange(out, "b h n d -> b n (h d)")

        # compute next hidden_states
        hidden_states = self.proj_attn(hidden_states)
        hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)

        # res connect and rescale
        hidden_states = (hidden_states + residual) / self.rescale_output_factor
        return hidden_states

    diffusers.models.attention.AttentionBlock.forward = forward_flash_attn
"""


# endregion


# region arguments


def load_metadata_from_safetensors(safetensors_file: str) -> dict:
    """r
    This method locks the file. see https://github.com/huggingface/safetensors/issues/164
    If the file isn't .safetensors or doesn't have metadata, return empty dict.
    """
    if os.path.splitext(safetensors_file)[1] != ".safetensors":
        return {}

    with safetensors.safe_open(safetensors_file, framework="pt", device="cpu") as f:
        metadata = f.metadata()
    if metadata is None:
        metadata = {}
    return metadata


# this metadata is referred from train_network and various scripts, so we wrote here
SS_METADATA_KEY_V2 = "ss_v2"
SS_METADATA_KEY_BASE_MODEL_VERSION = "ss_base_model_version"
SS_METADATA_KEY_NETWORK_MODULE = "ss_network_module"
SS_METADATA_KEY_NETWORK_DIM = "ss_network_dim"
SS_METADATA_KEY_NETWORK_ALPHA = "ss_network_alpha"
SS_METADATA_KEY_NETWORK_ARGS = "ss_network_args"

SS_METADATA_MINIMUM_KEYS = [
    SS_METADATA_KEY_V2,
    SS_METADATA_KEY_BASE_MODEL_VERSION,
    SS_METADATA_KEY_NETWORK_MODULE,
    SS_METADATA_KEY_NETWORK_DIM,
    SS_METADATA_KEY_NETWORK_ALPHA,
    SS_METADATA_KEY_NETWORK_ARGS,
]


def build_minimum_network_metadata(
    v2: Optional[bool],
    base_model: Optional[str],
    network_module: str,
    network_dim: str,
    network_alpha: str,
    network_args: Optional[dict],
):
    # old LoRA doesn't have base_model
    metadata = {
        SS_METADATA_KEY_NETWORK_MODULE: network_module,
        SS_METADATA_KEY_NETWORK_DIM: network_dim,
        SS_METADATA_KEY_NETWORK_ALPHA: network_alpha,
    }
    if v2 is not None:
        metadata[SS_METADATA_KEY_V2] = v2
    if base_model is not None:
        metadata[SS_METADATA_KEY_BASE_MODEL_VERSION] = base_model
    if network_args is not None:
        metadata[SS_METADATA_KEY_NETWORK_ARGS] = json.dumps(network_args)
    return metadata


def get_sai_model_spec(
    state_dict: dict,
    args: argparse.Namespace,
    sdxl: bool,
    lora: bool,
    textual_inversion: bool,
    is_stable_diffusion_ckpt: Optional[bool] = None,  # None for TI and LoRA
):
    timestamp = time.time()

    v2 = args.v2
    v_parameterization = args.v_parameterization
    reso = args.resolution

    title = args.metadata_title if args.metadata_title is not None else args.output_name

    if args.min_timestep is not None or args.max_timestep is not None:
        min_time_step = args.min_timestep if args.min_timestep is not None else 0
        max_time_step = args.max_timestep if args.max_timestep is not None else 1000
        timesteps = (min_time_step, max_time_step)
    else:
        timesteps = None

    metadata = sai_model_spec.build_metadata(
        state_dict,
        v2,
        v_parameterization,
        sdxl,
        lora,
        textual_inversion,
        timestamp,
        title=title,
        reso=reso,
        is_stable_diffusion_ckpt=is_stable_diffusion_ckpt,
        author=args.metadata_author,
        description=args.metadata_description,
        license=args.metadata_license,
        tags=args.metadata_tags,
        timesteps=timesteps,
        clip_skip=args.clip_skip,  # None or int
    )
    return metadata


def add_sd_models_arguments(parser: argparse.ArgumentParser):
    # for pretrained models
    parser.add_argument(
        "--v2", action="store_true", help="load Stable Diffusion v2.0 model / Stable Diffusion 2.0のモデルを読み込む"
    )
    parser.add_argument(
        "--v_parameterization", action="store_true", help="enable v-parameterization training / v-parameterization学習を有効にする"
    )
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        help="pretrained model to train, directory to Diffusers model or StableDiffusion checkpoint / 学習元モデル、Diffusers形式モデルのディレクトリまたはStableDiffusionのckptファイル",
    )
    parser.add_argument(
        "--tokenizer_cache_dir",
        type=str,
        default=None,
        help="directory for caching Tokenizer (for offline training) / Tokenizerをキャッシュするディレクトリ(ネット接続なしでの学習のため)",
    )


def add_optimizer_arguments(parser: argparse.ArgumentParser):
    parser.add_argument(
        "--optimizer_type",
        type=str,
        default="",
        help="Optimizer to use / オプティマイザの種類: AdamW (default), AdamW8bit, PagedAdamW, PagedAdamW8bit, PagedAdamW32bit, Lion8bit, PagedLion8bit, Lion, SGDNesterov, SGDNesterov8bit, DAdaptation(DAdaptAdamPreprint), DAdaptAdaGrad, DAdaptAdam, DAdaptAdan, DAdaptAdanIP, DAdaptLion, DAdaptSGD, AdaFactor",
    )

    # backward compatibility
    parser.add_argument(
        "--use_8bit_adam",
        action="store_true",
        help="use 8bit AdamW optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使う(bitsandbytesのインストールが必要)",
    )
    parser.add_argument(
        "--use_lion_optimizer",
        action="store_true",
        help="use Lion optimizer (requires lion-pytorch) / Lionオプティマイザを使う( lion-pytorch のインストールが必要)",
    )

    parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率")
    parser.add_argument(
        "--max_grad_norm",
        default=1.0,
        type=float,
        help="Max gradient norm, 0 for no clipping / 勾配正規化の最大norm、0でclippingを行わない",
    )

    parser.add_argument(
        "--optimizer_args",
        type=str,
        default=None,
        nargs="*",
        help='additional arguments for optimizer (like "weight_decay=0.01 betas=0.9,0.999 ...") / オプティマイザの追加引数(例: "weight_decay=0.01 betas=0.9,0.999 ...")',
    )

    parser.add_argument("--lr_scheduler_type", type=str, default="", help="custom scheduler module / 使用するスケジューラ")
    parser.add_argument(
        "--lr_scheduler_args",
        type=str,
        default=None,
        nargs="*",
        help='additional arguments for scheduler (like "T_max=100") / スケジューラの追加引数(例: "T_max100")',
    )

    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help="scheduler to use for learning rate / 学習率のスケジューラ: linear, cosine, cosine_with_restarts, polynomial, constant (default), constant_with_warmup, adafactor",
    )
    parser.add_argument(
        "--lr_warmup_steps",
        type=int,
        default=0,
        help="Number of steps for the warmup in the lr scheduler (default is 0) / 学習率のスケジューラをウォームアップするステップ数(デフォルト0)",
    )
    parser.add_argument(
        "--lr_scheduler_num_cycles",
        type=int,
        default=1,
        help="Number of restarts for cosine scheduler with restarts / cosine with restartsスケジューラでのリスタート回数",
    )
    parser.add_argument(
        "--lr_scheduler_power",
        type=float,
        default=1,
        help="Polynomial power for polynomial scheduler / polynomialスケジューラでのpolynomial power",
    )


def add_training_arguments(parser: argparse.ArgumentParser, support_dreambooth: bool):
    parser.add_argument(
        "--output_dir", type=str, default=None, help="directory to output trained model / 学習後のモデル出力先ディレクトリ"
    )
    parser.add_argument(
        "--output_name", type=str, default=None, help="base name of trained model file / 学習後のモデルの拡張子を除くファイル名"
    )
    parser.add_argument(
        "--huggingface_repo_id",
        type=str,
        default=None,
        help="huggingface repo name to upload / huggingfaceにアップロードするリポジトリ名",
    )
    parser.add_argument(
        "--huggingface_repo_type",
        type=str,
        default=None,
        help="huggingface repo type to upload / huggingfaceにアップロードするリポジトリの種類",
    )
    parser.add_argument(
        "--huggingface_path_in_repo",
        type=str,
        default=None,
        help="huggingface model path to upload files / huggingfaceにアップロードするファイルのパス",
    )
    parser.add_argument("--huggingface_token", type=str, default=None, help="huggingface token / huggingfaceのトークン")
    parser.add_argument(
        "--huggingface_repo_visibility",
        type=str,
        default=None,
        help="huggingface repository visibility ('public' for public, 'private' or None for private) / huggingfaceにアップロードするリポジトリの公開設定('public'で公開、'private'またはNoneで非公開)",
    )
    parser.add_argument(
        "--save_state_to_huggingface", action="store_true", help="save state to huggingface / huggingfaceにstateを保存する"
    )
    parser.add_argument(
        "--resume_from_huggingface",
        action="store_true",
        help="resume from huggingface (ex: --resume {repo_id}/{path_in_repo}:{revision}:{repo_type}) / huggingfaceから学習を再開する(例: --resume {repo_id}/{path_in_repo}:{revision}:{repo_type})",
    )
    parser.add_argument(
        "--async_upload",
        action="store_true",
        help="upload to huggingface asynchronously / huggingfaceに非同期でアップロードする",
    )
    parser.add_argument(
        "--save_precision",
        type=str,
        default=None,
        choices=[None, "float", "fp16", "bf16"],
        help="precision in saving / 保存時に精度を変更して保存する",
    )
    parser.add_argument(
        "--save_every_n_epochs",
        type=int,
        default=None,
        help="save checkpoint every N epochs / 学習中のモデルを指定エポックごとに保存する",
    )
    parser.add_argument(
        "--save_every_n_steps",
        type=int,
        default=None,
        help="save checkpoint every N steps / 学習中のモデルを指定ステップごとに保存する",
    )
    parser.add_argument(
        "--save_n_epoch_ratio",
        type=int,
        default=None,
        help="save checkpoint N epoch ratio (for example 5 means save at least 5 files total) / 学習中のモデルを指定のエポック割合で保存する(たとえば5を指定すると最低5個のファイルが保存される)",
    )
    parser.add_argument(
        "--save_last_n_epochs",
        type=int,
        default=None,
        help="save last N checkpoints when saving every N epochs (remove older checkpoints) / 指定エポックごとにモデルを保存するとき最大Nエポック保存する(古いチェックポイントは削除する)",
    )
    parser.add_argument(
        "--save_last_n_epochs_state",
        type=int,
        default=None,
        help="save last N checkpoints of state (overrides the value of --save_last_n_epochs)/ 最大Nエポックstateを保存する(--save_last_n_epochsの指定を上書きする)",
    )
    parser.add_argument(
        "--save_last_n_steps",
        type=int,
        default=None,
        help="save checkpoints until N steps elapsed (remove older checkpoints if N steps elapsed) / 指定ステップごとにモデルを保存するとき、このステップ数経過するまで保存する(このステップ数経過したら削除する)",
    )
    parser.add_argument(
        "--save_last_n_steps_state",
        type=int,
        default=None,
        help="save states until N steps elapsed (remove older states if N steps elapsed, overrides --save_last_n_steps) / 指定ステップごとにstateを保存するとき、このステップ数経過するまで保存する(このステップ数経過したら削除する。--save_last_n_stepsを上書きする)",
    )
    parser.add_argument(
        "--save_state",
        action="store_true",
        help="save training state additionally (including optimizer states etc.) when saving model / optimizerなど学習状態も含めたstateをモデル保存時に追加で保存する",
    )
    parser.add_argument(
        "--save_state_on_train_end",
        action="store_true",
        help="save training state (including optimizer states etc.) on train end / optimizerなど学習状態も含めたstateを学習完了時に保存する",
    )
    parser.add_argument("--resume", type=str, default=None, help="saved state to resume training / 学習再開するモデルのstate")

    parser.add_argument("--train_batch_size", type=int, default=1, help="batch size for training / 学習時のバッチサイズ")
    parser.add_argument(
        "--max_token_length",
        type=int,
        default=None,
        choices=[None, 150, 225],
        help="max token length of text encoder (default for 75, 150 or 225) / text encoderのトークンの最大長(未指定で75、150または225が指定可)",
    )
    parser.add_argument(
        "--mem_eff_attn",
        action="store_true",
        help="use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う",
    )
    parser.add_argument(
        "--torch_compile", action="store_true", help="use torch.compile (requires PyTorch 2.0) / torch.compile を使う"
    )
    parser.add_argument(
        "--dynamo_backend",
        type=str,
        default="inductor",
        # available backends:
        # https://github.com/huggingface/accelerate/blob/d1abd59114ada8ba673e1214218cb2878c13b82d/src/accelerate/utils/dataclasses.py#L376-L388C5
        # https://pytorch.org/docs/stable/torch.compiler.html
        choices=["eager", "aot_eager", "inductor", "aot_ts_nvfuser", "nvprims_nvfuser", "cudagraphs", "ofi", "fx2trt", "onnxrt"],
        help="dynamo backend type (default is inductor) / dynamoのbackendの種類(デフォルトは inductor)",
    )
    parser.add_argument("--xformers", action="store_true", help="use xformers for CrossAttention / CrossAttentionにxformersを使う")
    parser.add_argument(
        "--sdpa",
        action="store_true",
        help="use sdpa for CrossAttention (requires PyTorch 2.0) / CrossAttentionにsdpaを使う(PyTorch 2.0が必要)",
    )
    parser.add_argument(
        "--vae",
        type=str,
        default=None,
        help="path to checkpoint of vae to replace / VAEを入れ替える場合、VAEのcheckpointファイルまたはディレクトリ",
    )

    parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数")
    parser.add_argument(
        "--max_train_epochs",
        type=int,
        default=None,
        help="training epochs (overrides max_train_steps) / 学習エポック数(max_train_stepsを上書きします)",
    )
    parser.add_argument(
        "--max_data_loader_n_workers",
        type=int,
        default=8,
        help="max num workers for DataLoader (lower is less main RAM usage, faster epoch start and slower data loading) / DataLoaderの最大プロセス数(小さい値ではメインメモリの使用量が減りエポック間の待ち時間が減りますが、データ読み込みは遅くなります)",
    )
    parser.add_argument(
        "--persistent_data_loader_workers",
        action="store_true",
        help="persistent DataLoader workers (useful for reduce time gap between epoch, but may use more memory) / DataLoader のワーカーを持続させる (エポック間の時間差を少なくするのに有効だが、より多くのメモリを消費する可能性がある)",
    )
    parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed")
    parser.add_argument(
        "--gradient_checkpointing", action="store_true", help="enable gradient checkpointing / grandient checkpointingを有効にする"
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass / 学習時に逆伝播をする前に勾配を合計するステップ数",
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help="use mixed precision / 混合精度を使う場合、その精度",
    )
    parser.add_argument("--full_fp16", action="store_true", help="fp16 training including gradients / 勾配も含めてfp16で学習する")
    parser.add_argument(
        "--full_bf16", action="store_true", help="bf16 training including gradients / 勾配も含めてbf16で学習する"
    )  # TODO move to SDXL training, because it is not supported by SD1/2
    parser.add_argument("--fp8_base", action="store_true", help="use fp8 for base model / base modelにfp8を使う")

    parser.add_argument(
        "--ddp_timeout",
        type=int,
        default=None,
        help="DDP timeout (min, None for default of accelerate) / DDPのタイムアウト(分、Noneでaccelerateのデフォルト)",
    )
    parser.add_argument(
        "--ddp_gradient_as_bucket_view",
        action="store_true",
        help="enable gradient_as_bucket_view for DDP / DDPでgradient_as_bucket_viewを有効にする",
    )
    parser.add_argument(
        "--ddp_static_graph",
        action="store_true",
        help="enable static_graph for DDP / DDPでstatic_graphを有効にする",
    )
    parser.add_argument(
        "--clip_skip",
        type=int,
        default=None,
        help="use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いる(nは1以上)",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default=None,
        help="enable logging and output TensorBoard log to this directory / ログ出力を有効にしてこのディレクトリにTensorBoard用のログを出力する",
    )
    parser.add_argument(
        "--log_with",
        type=str,
        default=None,
        choices=["tensorboard", "wandb", "all"],
        help="what logging tool(s) to use (if 'all', TensorBoard and WandB are both used) / ログ出力に使用するツール (allを指定するとTensorBoardとWandBの両方が使用される)",
    )
    parser.add_argument(
        "--log_prefix", type=str, default=None, help="add prefix for each log directory / ログディレクトリ名の先頭に追加する文字列"
    )
    parser.add_argument(
        "--log_tracker_name",
        type=str,
        default=None,
        help="name of tracker to use for logging, default is script-specific default name / ログ出力に使用するtrackerの名前、省略時はスクリプトごとのデフォルト名",
    )
    parser.add_argument(
        "--wandb_run_name",
        type=str,
        default=None,
        help="The name of the specific wandb session / wandb ログに表示される特定の実行の名前",
    )
    parser.add_argument(
        "--log_tracker_config",
        type=str,
        default=None,
        help="path to tracker config file to use for logging / ログ出力に使用するtrackerの設定ファイルのパス",
    )
    parser.add_argument(
        "--wandb_api_key",
        type=str,
        default=None,
        help="specify WandB API key to log in before starting training (optional). / WandB APIキーを指定して学習開始前にログインする(オプション)",
    )

    parser.add_argument(
        "--noise_offset",
        type=float,
        default=None,
        help="enable noise offset with this value (if enabled, around 0.1 is recommended) / Noise offsetを有効にしてこの値を設定する(有効にする場合は0.1程度を推奨)",
    )
    parser.add_argument(
        "--noise_offset_random_strength",
        action="store_true",
        help="use random strength between 0~noise_offset for noise offset. / noise offsetにおいて、0からnoise_offsetの間でランダムな強度を使用します。",
    )
    parser.add_argument(
        "--multires_noise_iterations",
        type=int,
        default=None,
        help="enable multires noise with this number of iterations (if enabled, around 6-10 is recommended) / Multires noiseを有効にしてこのイテレーション数を設定する(有効にする場合は6-10程度を推奨)",
    )
    parser.add_argument(
        "--ip_noise_gamma",
        type=float,
        default=None,
        help="enable input perturbation noise. used for regularization. recommended value: around 0.1 (from arxiv.org/abs/2301.11706) "
        + "/  input perturbation noiseを有効にする。正則化に使用される。推奨値: 0.1程度 (arxiv.org/abs/2301.11706 より)",
    )
    parser.add_argument(
        "--ip_noise_gamma_random_strength",
        action="store_true",
        help="Use random strength between 0~ip_noise_gamma for input perturbation noise."
        + "/ input perturbation noiseにおいて、0からip_noise_gammaの間でランダムな強度を使用します。",
    )
    # parser.add_argument(
    #     "--perlin_noise",
    #     type=int,
    #     default=None,
    #     help="enable perlin noise and set the octaves / perlin noiseを有効にしてoctavesをこの値に設定する",
    # )
    parser.add_argument(
        "--multires_noise_discount",
        type=float,
        default=0.3,
        help="set discount value for multires noise (has no effect without --multires_noise_iterations) / Multires noiseのdiscount値を設定する(--multires_noise_iterations指定時のみ有効)",
    )
    parser.add_argument(
        "--adaptive_noise_scale",
        type=float,
        default=None,
        help="add `latent mean absolute value * this value` to noise_offset (disabled if None, default) / latentの平均値の絶対値 * この値をnoise_offsetに加算する(Noneの場合は無効、デフォルト)",
    )
    parser.add_argument(
        "--zero_terminal_snr",
        action="store_true",
        help="fix noise scheduler betas to enforce zero terminal SNR / noise schedulerのbetasを修正して、zero terminal SNRを強制する",
    )
    parser.add_argument(
        "--min_timestep",
        type=int,
        default=None,
        help="set minimum time step for U-Net training (0~999, default is 0) / U-Net学習時のtime stepの最小値を設定する(0~999で指定、省略時はデフォルト値(0)) ",
    )
    parser.add_argument(
        "--max_timestep",
        type=int,
        default=None,
        help="set maximum time step for U-Net training (1~1000, default is 1000) / U-Net学習時のtime stepの最大値を設定する(1~1000で指定、省略時はデフォルト値(1000))",
    )
    parser.add_argument(
        "--loss_type",
        type=str,
        default="l2",
        choices=["l2", "huber", "smooth_l1"],
        help="The type of loss function to use (L2, Huber, or smooth L1), default is L2 / 使用する損失関数の種類(L2、Huber、またはsmooth L1)、デフォルトはL2",
    )
    parser.add_argument(
        "--huber_schedule",
        type=str,
        default="snr",
        choices=["constant", "exponential", "snr"],
        help="The scheduling method for Huber loss (constant, exponential, or SNR-based). Only used when loss_type is 'huber' or 'smooth_l1'. default is snr"
        + " / Huber損失のスケジューリング方法(constant、exponential、またはSNRベース)。loss_typeが'huber'または'smooth_l1'の場合に有効、デフォルトは snr",
    )
    parser.add_argument(
        "--huber_c",
        type=float,
        default=0.1,
        help="The huber loss parameter. Only used if one of the huber loss modes (huber or smooth l1) is selected with loss_type. default is 0.1 / Huber損失のパラメータ。loss_typeがhuberまたはsmooth l1の場合に有効。デフォルトは0.1",
    )

    parser.add_argument(
        "--lowram",
        action="store_true",
        help="enable low RAM optimization. e.g. load models to VRAM instead of RAM (for machines which have bigger VRAM than RAM such as Colab and Kaggle) / メインメモリが少ない環境向け最適化を有効にする。たとえばVRAMにモデルを読み込む等(ColabやKaggleなどRAMに比べてVRAMが多い環境向け)",
    )
    parser.add_argument(
        "--highvram",
        action="store_true",
        help="disable low VRAM optimization. e.g. do not clear CUDA cache after each latent caching (for machines which have bigger VRAM) "
        + "/ VRAMが少ない環境向け最適化を無効にする。たとえば各latentのキャッシュ後のCUDAキャッシュクリアを行わない等(VRAMが多い環境向け)",
    )

    parser.add_argument(
        "--sample_every_n_steps",
        type=int,
        default=None,
        help="generate sample images every N steps / 学習中のモデルで指定ステップごとにサンプル出力する",
    )
    parser.add_argument(
        "--sample_at_first", action="store_true", help="generate sample images before training / 学習前にサンプル出力する"
    )
    parser.add_argument(
        "--sample_every_n_epochs",
        type=int,
        default=None,
        help="generate sample images every N epochs (overwrites n_steps) / 学習中のモデルで指定エポックごとにサンプル出力する(ステップ数指定を上書きします)",
    )
    parser.add_argument(
        "--sample_prompts",
        type=str,
        default=None,
        help="file for prompts to generate sample images / 学習中モデルのサンプル出力用プロンプトのファイル",
    )
    parser.add_argument(
        "--sample_sampler",
        type=str,
        default="ddim",
        choices=[
            "ddim",
            "pndm",
            "lms",
            "euler",
            "euler_a",
            "heun",
            "dpm_2",
            "dpm_2_a",
            "dpmsolver",
            "dpmsolver++",
            "dpmsingle",
            "k_lms",
            "k_euler",
            "k_euler_a",
            "k_dpm_2",
            "k_dpm_2_a",
        ],
        help=f"sampler (scheduler) type for sample images / サンプル出力時のサンプラー(スケジューラ)の種類",
    )

    parser.add_argument(
        "--config_file",
        type=str,
        default=None,
        help="using .toml instead of args to pass hyperparameter / ハイパーパラメータを引数ではなく.tomlファイルで渡す",
    )
    parser.add_argument(
        "--output_config", action="store_true", help="output command line args to given .toml file / 引数を.tomlファイルに出力する"
    )

    # SAI Model spec
    parser.add_argument(
        "--metadata_title",
        type=str,
        default=None,
        help="title for model metadata (default is output_name) / メタデータに書き込まれるモデルタイトル、省略時はoutput_name",
    )
    parser.add_argument(
        "--metadata_author",
        type=str,
        default=None,
        help="author name for model metadata / メタデータに書き込まれるモデル作者名",
    )
    parser.add_argument(
        "--metadata_description",
        type=str,
        default=None,
        help="description for model metadata / メタデータに書き込まれるモデル説明",
    )
    parser.add_argument(
        "--metadata_license",
        type=str,
        default=None,
        help="license for model metadata / メタデータに書き込まれるモデルライセンス",
    )
    parser.add_argument(
        "--metadata_tags",
        type=str,
        default=None,
        help="tags for model metadata, separated by comma / メタデータに書き込まれるモデルタグ、カンマ区切り",
    )

    if support_dreambooth:
        # DreamBooth training
        parser.add_argument(
            "--prior_loss_weight", type=float, default=1.0, help="loss weight for regularization images / 正則化画像のlossの重み"
        )


def add_masked_loss_arguments(parser: argparse.ArgumentParser):
    parser.add_argument(
        "--conditioning_data_dir",
        type=str,
        default=None,
        help="conditioning data directory / 条件付けデータのディレクトリ",
    )
    parser.add_argument(
        "--masked_loss",
        action="store_true",
        help="apply mask for calculating loss. conditioning_data_dir is required for dataset. / 損失計算時にマスクを適用する。datasetにはconditioning_data_dirが必要",
    )


# verify command line args for training
def verify_command_line_training_args(args: argparse.Namespace):
    # if wandb is enabled, the command line is exposed to the public
    # check whether sensitive options are included in the command line arguments
    # if so, warn or inform the user to move them to the configuration file
    # wandbが有効な場合、コマンドラインが公開される
    # 学習用のコマンドライン引数に敏感なオプションが含まれているかどうかを確認し、
    # 含まれている場合は設定ファイルに移動するようにユーザーに警告または通知する

    wandb_enabled = args.log_with is not None and args.log_with != "tensorboard"  # "all" or "wandb"
    if not wandb_enabled:
        return

    sensitive_args = ["wandb_api_key", "huggingface_token"]
    sensitive_path_args = [
        "pretrained_model_name_or_path",
        "vae",
        "tokenizer_cache_dir",
        "train_data_dir",
        "conditioning_data_dir",
        "reg_data_dir",
        "output_dir",
        "logging_dir",
    ]

    for arg in sensitive_args:
        if getattr(args, arg, None) is not None:
            logger.warning(
                f"wandb is enabled, but option `{arg}` is included in the command line. Because the command line is exposed to the public, it is recommended to move it to the `.toml` file."
                + f" / wandbが有効で、かつオプション `{arg}` がコマンドラインに含まれています。コマンドラインは公開されるため、`.toml`ファイルに移動することをお勧めします。"
            )

    # if path is absolute, it may include sensitive information
    for arg in sensitive_path_args:
        if getattr(args, arg, None) is not None and os.path.isabs(getattr(args, arg)):
            logger.info(
                f"wandb is enabled, but option `{arg}` is included in the command line and it is an absolute path. Because the command line is exposed to the public, it is recommended to move it to the `.toml` file or use relative path."
                + f" / wandbが有効で、かつオプション `{arg}` がコマンドラインに含まれており、絶対パスです。コマンドラインは公開されるため、`.toml`ファイルに移動するか、相対パスを使用することをお勧めします。"
            )

    if getattr(args, "config_file", None) is not None:
        logger.info(
            f"wandb is enabled, but option `config_file` is included in the command line. Because the command line is exposed to the public, please be careful about the information included in the path."
            + f" / wandbが有効で、かつオプション `config_file` がコマンドラインに含まれています。コマンドラインは公開されるため、パスに含まれる情報にご注意ください。"
        )

    # other sensitive options
    if args.huggingface_repo_id is not None and args.huggingface_repo_visibility != "public":
        logger.info(
            f"wandb is enabled, but option huggingface_repo_id is included in the command line and huggingface_repo_visibility is not 'public'. Because the command line is exposed to the public, it is recommended to move it to the `.toml` file."
            + f" / wandbが有効で、かつオプション huggingface_repo_id がコマンドラインに含まれており、huggingface_repo_visibility が 'public' ではありません。コマンドラインは公開されるため、`.toml`ファイルに移動することをお勧めします。"
        )


def verify_training_args(args: argparse.Namespace):
    r"""
    Verify training arguments. Also reflect highvram option to global variable
    学習用引数を検証する。あわせて highvram オプションの指定をグローバル変数に反映する
    """
    if args.highvram:
        print("highvram is enabled / highvramが有効です")
        global HIGH_VRAM
        HIGH_VRAM = True

    if args.v_parameterization and not args.v2:
        logger.warning(
            "v_parameterization should be with v2 not v1 or sdxl / v1やsdxlでv_parameterizationを使用することは想定されていません"
        )
    if args.v2 and args.clip_skip is not None:
        logger.warning("v2 with clip_skip will be unexpected / v2でclip_skipを使用することは想定されていません")

    if args.cache_latents_to_disk and not args.cache_latents:
        args.cache_latents = True
        logger.warning(
            "cache_latents_to_disk is enabled, so cache_latents is also enabled / cache_latents_to_diskが有効なため、cache_latentsを有効にします"
        )

    # noise_offset, perlin_noise, multires_noise_iterations cannot be enabled at the same time
    # # Listを使って数えてもいいけど並べてしまえ
    # if args.noise_offset is not None and args.multires_noise_iterations is not None:
    #     raise ValueError(
    #         "noise_offset and multires_noise_iterations cannot be enabled at the same time / noise_offsetとmultires_noise_iterationsを同時に有効にできません"
    #     )
    # if args.noise_offset is not None and args.perlin_noise is not None:
    #     raise ValueError("noise_offset and perlin_noise cannot be enabled at the same time / noise_offsetとperlin_noiseは同時に有効にできません")
    # if args.perlin_noise is not None and args.multires_noise_iterations is not None:
    #     raise ValueError(
    #         "perlin_noise and multires_noise_iterations cannot be enabled at the same time / perlin_noiseとmultires_noise_iterationsを同時に有効にできません"
    #     )

    if args.adaptive_noise_scale is not None and args.noise_offset is None:
        raise ValueError("adaptive_noise_scale requires noise_offset / adaptive_noise_scaleを使用するにはnoise_offsetが必要です")

    if args.scale_v_pred_loss_like_noise_pred and not args.v_parameterization:
        raise ValueError(
            "scale_v_pred_loss_like_noise_pred can be enabled only with v_parameterization / scale_v_pred_loss_like_noise_predはv_parameterizationが有効なときのみ有効にできます"
        )

    if args.v_pred_like_loss and args.v_parameterization:
        raise ValueError(
            "v_pred_like_loss cannot be enabled with v_parameterization / v_pred_like_lossはv_parameterizationが有効なときには有効にできません"
        )

    if args.zero_terminal_snr and not args.v_parameterization:
        logger.warning(
            f"zero_terminal_snr is enabled, but v_parameterization is not enabled. training will be unexpected"
            + " / zero_terminal_snrが有効ですが、v_parameterizationが有効ではありません。学習結果は想定外になる可能性があります"
        )

    if args.sample_every_n_epochs is not None and args.sample_every_n_epochs <= 0:
        logger.warning(
            "sample_every_n_epochs is less than or equal to 0, so it will be disabled / sample_every_n_epochsに0以下の値が指定されたため無効になります"
        )
        args.sample_every_n_epochs = None

    if args.sample_every_n_steps is not None and args.sample_every_n_steps <= 0:
        logger.warning(
            "sample_every_n_steps is less than or equal to 0, so it will be disabled / sample_every_n_stepsに0以下の値が指定されたため無効になります"
        )
        args.sample_every_n_steps = None


def add_dataset_arguments(
    parser: argparse.ArgumentParser, support_dreambooth: bool, support_caption: bool, support_caption_dropout: bool
):
    # dataset common
    parser.add_argument(
        "--train_data_dir", type=str, default=None, help="directory for train images / 学習画像データのディレクトリ"
    )
    parser.add_argument(
        "--cache_info",
        action="store_true",
        help="cache meta information (caption and image size) for faster dataset loading. only available for DreamBooth"
        + " / メタ情報(キャプションとサイズ)をキャッシュしてデータセット読み込みを高速化する。DreamBooth方式のみ有効",
    )
    parser.add_argument(
        "--shuffle_caption", action="store_true", help="shuffle separated caption / 区切られたcaptionの各要素をshuffleする"
    )
    parser.add_argument("--caption_separator", type=str, default=",", help="separator for caption / captionの区切り文字")
    parser.add_argument(
        "--caption_extension", type=str, default=".caption", help="extension of caption files / 読み込むcaptionファイルの拡張子"
    )
    parser.add_argument(
        "--caption_extention",
        type=str,
        default=None,
        help="extension of caption files (backward compatibility) / 読み込むcaptionファイルの拡張子(スペルミスを残してあります)",
    )
    parser.add_argument(
        "--keep_tokens",
        type=int,
        default=0,
        help="keep heading N tokens when shuffling caption tokens (token means comma separated strings) / captionのシャッフル時に、先頭からこの個数のトークンをシャッフルしないで残す(トークンはカンマ区切りの各部分を意味する)",
    )
    parser.add_argument(
        "--keep_tokens_separator",
        type=str,
        default="",
        help="A custom separator to divide the caption into fixed and flexible parts. Tokens before this separator will not be shuffled. If not specified, '--keep_tokens' will be used to determine the fixed number of tokens."
        + " / captionを固定部分と可変部分に分けるためのカスタム区切り文字。この区切り文字より前のトークンはシャッフルされない。指定しない場合、'--keep_tokens'が固定部分のトークン数として使用される。",
    )
    parser.add_argument(
        "--secondary_separator",
        type=str,
        default=None,
        help="a secondary separator for caption. This separator is replaced to caption_separator after dropping/shuffling caption"
        + " / captionのセカンダリ区切り文字。この区切り文字はcaptionのドロップやシャッフル後にcaption_separatorに置き換えられる",
    )
    parser.add_argument(
        "--enable_wildcard",
        action="store_true",
        help="enable wildcard for caption (e.g. '{image|picture|rendition}') / captionのワイルドカードを有効にする(例:'{image|picture|rendition}')",
    )
    parser.add_argument(
        "--caption_prefix",
        type=str,
        default=None,
        help="prefix for caption text / captionのテキストの先頭に付ける文字列",
    )
    parser.add_argument(
        "--caption_suffix",
        type=str,
        default=None,
        help="suffix for caption text / captionのテキストの末尾に付ける文字列",
    )
    parser.add_argument(
        "--color_aug", action="store_true", help="enable weak color augmentation / 学習時に色合いのaugmentationを有効にする"
    )
    parser.add_argument(
        "--flip_aug", action="store_true", help="enable horizontal flip augmentation / 学習時に左右反転のaugmentationを有効にする"
    )
    parser.add_argument(
        "--face_crop_aug_range",
        type=str,
        default=None,
        help="enable face-centered crop augmentation and its range (e.g. 2.0,4.0) / 学習時に顔を中心とした切り出しaugmentationを有効にするときは倍率を指定する(例:2.0,4.0)",
    )
    parser.add_argument(
        "--random_crop",
        action="store_true",
        help="enable random crop (for style training in face-centered crop augmentation) / ランダムな切り出しを有効にする(顔を中心としたaugmentationを行うときに画風の学習用に指定する)",
    )
    parser.add_argument(
        "--debug_dataset",
        action="store_true",
        help="show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)",
    )
    parser.add_argument(
        "--resolution",
        type=str,
        default=None,
        help="resolution in training ('size' or 'width,height') / 学習時の画像解像度('サイズ'指定、または'幅,高さ'指定)",
    )
    parser.add_argument(
        "--cache_latents",
        action="store_true",
        help="cache latents to main memory to reduce VRAM usage (augmentations must be disabled) / VRAM削減のためにlatentをメインメモリにcacheする(augmentationは使用不可) ",
    )
    parser.add_argument(
        "--vae_batch_size", type=int, default=1, help="batch size for caching latents / latentのcache時のバッチサイズ"
    )
    parser.add_argument(
        "--cache_latents_to_disk",
        action="store_true",
        help="cache latents to disk to reduce VRAM usage (augmentations must be disabled) / VRAM削減のためにlatentをディスクにcacheする(augmentationは使用不可)",
    )
    parser.add_argument(
        "--enable_bucket",
        action="store_true",
        help="enable buckets for multi aspect ratio training / 複数解像度学習のためのbucketを有効にする",
    )
    parser.add_argument("--min_bucket_reso", type=int, default=256, help="minimum resolution for buckets / bucketの最小解像度")
    parser.add_argument("--max_bucket_reso", type=int, default=1024, help="maximum resolution for buckets / bucketの最大解像度")
    parser.add_argument(
        "--bucket_reso_steps",
        type=int,
        default=64,
        help="steps of resolution for buckets, divisible by 8 is recommended / bucketの解像度の単位、8で割り切れる値を推奨します",
    )
    parser.add_argument(
        "--bucket_no_upscale",
        action="store_true",
        help="make bucket for each image without upscaling / 画像を拡大せずbucketを作成します",
    )

    parser.add_argument(
        "--token_warmup_min",
        type=int,
        default=1,
        help="start learning at N tags (token means comma separated strinfloatgs) / タグ数をN個から増やしながら学習する",
    )
    parser.add_argument(
        "--token_warmup_step",
        type=float,
        default=0,
        help="tag length reaches maximum on N steps (or N*max_train_steps if N<1) / N(N<1ならN*max_train_steps)ステップでタグ長が最大になる。デフォルトは0(最初から最大)",
    )

    parser.add_argument(
        "--dataset_class",
        type=str,
        default=None,
        help="dataset class for arbitrary dataset (package.module.Class) / 任意のデータセットを用いるときのクラス名 (package.module.Class)",
    )

    if support_caption_dropout:
        # Textual Inversion はcaptionのdropoutをsupportしない
        # いわゆるtensorのDropoutと紛らわしいのでprefixにcaptionを付けておく every_n_epochsは他と平仄を合わせてdefault Noneに
        parser.add_argument(
            "--caption_dropout_rate", type=float, default=0.0, help="Rate out dropout caption(0.0~1.0) / captionをdropoutする割合"
        )
        parser.add_argument(
            "--caption_dropout_every_n_epochs",
            type=int,
            default=0,
            help="Dropout all captions every N epochs / captionを指定エポックごとにdropoutする",
        )
        parser.add_argument(
            "--caption_tag_dropout_rate",
            type=float,
            default=0.0,
            help="Rate out dropout comma separated tokens(0.0~1.0) / カンマ区切りのタグをdropoutする割合",
        )

    if support_dreambooth:
        # DreamBooth dataset
        parser.add_argument(
            "--reg_data_dir", type=str, default=None, help="directory for regularization images / 正則化画像データのディレクトリ"
        )

    if support_caption:
        # caption dataset
        parser.add_argument(
            "--in_json", type=str, default=None, help="json metadata for dataset / データセットのmetadataのjsonファイル"
        )
        parser.add_argument(
            "--dataset_repeats",
            type=int,
            default=1,
            help="repeat dataset when training with captions / キャプションでの学習時にデータセットを繰り返す回数",
        )


def add_sd_saving_arguments(parser: argparse.ArgumentParser):
    parser.add_argument(
        "--save_model_as",
        type=str,
        default=None,
        choices=[None, "ckpt", "safetensors", "diffusers", "diffusers_safetensors"],
        help="format to save the model (default is same to original) / モデル保存時の形式(未指定時は元モデルと同じ)",
    )
    parser.add_argument(
        "--use_safetensors",
        action="store_true",
        help="use safetensors format to save (if save_model_as is not specified) / checkpoint、モデルをsafetensors形式で保存する(save_model_as未指定時)",
    )


def read_config_from_file(args: argparse.Namespace, parser: argparse.ArgumentParser):
    if not args.config_file:
        return args

    config_path = args.config_file + ".toml" if not args.config_file.endswith(".toml") else args.config_file

    if args.output_config:
        # check if config file exists
        if os.path.exists(config_path):
            logger.error(f"Config file already exists. Aborting... / 出力先の設定ファイルが既に存在します: {config_path}")
            exit(1)

        # convert args to dictionary
        args_dict = vars(args)

        # remove unnecessary keys
        for key in ["config_file", "output_config", "wandb_api_key"]:
            if key in args_dict:
                del args_dict[key]

        # get default args from parser
        default_args = vars(parser.parse_args([]))

        # remove default values: cannot use args_dict.items directly because it will be changed during iteration
        for key, value in list(args_dict.items()):
            if key in default_args and value == default_args[key]:
                del args_dict[key]

        # convert Path to str in dictionary
        for key, value in args_dict.items():
            if isinstance(value, pathlib.Path):
                args_dict[key] = str(value)

        # convert to toml and output to file
        with open(config_path, "w") as f:
            toml.dump(args_dict, f)

        logger.info(f"Saved config file / 設定ファイルを保存しました: {config_path}")
        exit(0)

    if not os.path.exists(config_path):
        logger.info(f"{config_path} not found.")
        exit(1)

    logger.info(f"Loading settings from {config_path}...")
    with open(config_path, "r", encoding="utf-8") as f:
        config_dict = toml.load(f)

    # combine all sections into one
    ignore_nesting_dict = {}
    for section_name, section_dict in config_dict.items():
        # if value is not dict, save key and value as is
        if not isinstance(section_dict, dict):
            ignore_nesting_dict[section_name] = section_dict
            continue

        # if value is dict, save all key and value into one dict
        for key, value in section_dict.items():
            ignore_nesting_dict[key] = value

    config_args = argparse.Namespace(**ignore_nesting_dict)
    args = parser.parse_args(namespace=config_args)
    args.config_file = os.path.splitext(args.config_file)[0]
    logger.info(args.config_file)

    return args


# endregion

# region utils


def resume_from_local_or_hf_if_specified(accelerator, args):
    if not args.resume:
        return

    if not args.resume_from_huggingface:
        logger.info(f"resume training from local state: {args.resume}")
        accelerator.load_state(args.resume)
        return

    logger.info(f"resume training from huggingface state: {args.resume}")
    repo_id = args.resume.split("/")[0] + "/" + args.resume.split("/")[1]
    path_in_repo = "/".join(args.resume.split("/")[2:])
    revision = None
    repo_type = None
    if ":" in path_in_repo:
        divided = path_in_repo.split(":")
        if len(divided) == 2:
            path_in_repo, revision = divided
            repo_type = "model"
        else:
            path_in_repo, revision, repo_type = divided
    logger.info(f"Downloading state from huggingface: {repo_id}/{path_in_repo}@{revision}")

    list_files = huggingface_util.list_dir(
        repo_id=repo_id,
        subfolder=path_in_repo,
        revision=revision,
        token=args.huggingface_token,
        repo_type=repo_type,
    )

    async def download(filename) -> str:
        def task():
            return hf_hub_download(
                repo_id=repo_id,
                filename=filename,
                revision=revision,
                repo_type=repo_type,
                token=args.huggingface_token,
            )

        return await asyncio.get_event_loop().run_in_executor(None, task)

    loop = asyncio.get_event_loop()
    results = loop.run_until_complete(asyncio.gather(*[download(filename=filename.rfilename) for filename in list_files]))
    if len(results) == 0:
        raise ValueError(
            "No files found in the specified repo id/path/revision / 指定されたリポジトリID/パス/リビジョンにファイルが見つかりませんでした"
        )
    dirname = os.path.dirname(results[0])
    accelerator.load_state(dirname)


def get_optimizer(args, trainable_params):
    # "Optimizer to use: AdamW, AdamW8bit, Lion, SGDNesterov, SGDNesterov8bit, PagedAdamW, PagedAdamW8bit, PagedAdamW32bit, Lion8bit, PagedLion8bit, DAdaptation(DAdaptAdamPreprint), DAdaptAdaGrad, DAdaptAdam, DAdaptAdan, DAdaptAdanIP, DAdaptLion, DAdaptSGD, Adafactor"

    optimizer_type = args.optimizer_type
    if args.use_8bit_adam:
        assert (
            not args.use_lion_optimizer
        ), "both option use_8bit_adam and use_lion_optimizer are specified / use_8bit_adamとuse_lion_optimizerの両方のオプションが指定されています"
        assert (
            optimizer_type is None or optimizer_type == ""
        ), "both option use_8bit_adam and optimizer_type are specified / use_8bit_adamとoptimizer_typeの両方のオプションが指定されています"
        optimizer_type = "AdamW8bit"

    elif args.use_lion_optimizer:
        assert (
            optimizer_type is None or optimizer_type == ""
        ), "both option use_lion_optimizer and optimizer_type are specified / use_lion_optimizerとoptimizer_typeの両方のオプションが指定されています"
        optimizer_type = "Lion"

    if optimizer_type is None or optimizer_type == "":
        optimizer_type = "AdamW"
    optimizer_type = optimizer_type.lower()

    # 引数を分解する
    optimizer_kwargs = {}
    if args.optimizer_args is not None and len(args.optimizer_args) > 0:
        for arg in args.optimizer_args:
            key, value = arg.split("=")
            value = ast.literal_eval(value)

            # value = value.split(",")
            # for i in range(len(value)):
            #     if value[i].lower() == "true" or value[i].lower() == "false":
            #         value[i] = value[i].lower() == "true"
            #     else:
            #         value[i] = ast.float(value[i])
            # if len(value) == 1:
            #     value = value[0]
            # else:
            #     value = tuple(value)

            optimizer_kwargs[key] = value
    # logger.info(f"optkwargs {optimizer}_{kwargs}")

    lr = args.learning_rate
    optimizer = None

    if optimizer_type == "Lion".lower():
        try:
            import lion_pytorch
        except ImportError:
            raise ImportError("No lion_pytorch / lion_pytorch がインストールされていないようです")
        logger.info(f"use Lion optimizer | {optimizer_kwargs}")
        optimizer_class = lion_pytorch.Lion
        optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)

    elif optimizer_type.endswith("8bit".lower()):
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError("No bitsandbytes / bitsandbytesがインストールされていないようです")

        if optimizer_type == "AdamW8bit".lower():
            logger.info(f"use 8-bit AdamW optimizer | {optimizer_kwargs}")
            optimizer_class = bnb.optim.AdamW8bit
            optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)

        elif optimizer_type == "SGDNesterov8bit".lower():
            logger.info(f"use 8-bit SGD with Nesterov optimizer | {optimizer_kwargs}")
            if "momentum" not in optimizer_kwargs:
                logger.warning(
                    f"8-bit SGD with Nesterov must be with momentum, set momentum to 0.9 / 8-bit SGD with Nesterovはmomentum指定が必須のため0.9に設定します"
                )
                optimizer_kwargs["momentum"] = 0.9

            optimizer_class = bnb.optim.SGD8bit
            optimizer = optimizer_class(trainable_params, lr=lr, nesterov=True, **optimizer_kwargs)

        elif optimizer_type == "Lion8bit".lower():
            logger.info(f"use 8-bit Lion optimizer | {optimizer_kwargs}")
            try:
                optimizer_class = bnb.optim.Lion8bit
            except AttributeError:
                raise AttributeError(
                    "No Lion8bit. The version of bitsandbytes installed seems to be old. Please install 0.38.0 or later. / Lion8bitが定義されていません。インストールされているbitsandbytesのバージョンが古いようです。0.38.0以上をインストールしてください"
                )
        elif optimizer_type == "PagedAdamW8bit".lower():
            logger.info(f"use 8-bit PagedAdamW optimizer | {optimizer_kwargs}")
            try:
                optimizer_class = bnb.optim.PagedAdamW8bit
            except AttributeError:
                raise AttributeError(
                    "No PagedAdamW8bit. The version of bitsandbytes installed seems to be old. Please install 0.39.0 or later. / PagedAdamW8bitが定義されていません。インストールされているbitsandbytesのバージョンが古いようです。0.39.0以上をインストールしてください"
                )
        elif optimizer_type == "PagedLion8bit".lower():
            logger.info(f"use 8-bit Paged Lion optimizer | {optimizer_kwargs}")
            try:
                optimizer_class = bnb.optim.PagedLion8bit
            except AttributeError:
                raise AttributeError(
                    "No PagedLion8bit. The version of bitsandbytes installed seems to be old. Please install 0.39.0 or later. / PagedLion8bitが定義されていません。インストールされているbitsandbytesのバージョンが古いようです。0.39.0以上をインストールしてください"
                )

        optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)

    elif optimizer_type == "PagedAdamW".lower():
        logger.info(f"use PagedAdamW optimizer | {optimizer_kwargs}")
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError("No bitsandbytes / bitsandbytesがインストールされていないようです")
        try:
            optimizer_class = bnb.optim.PagedAdamW
        except AttributeError:
            raise AttributeError(
                "No PagedAdamW. The version of bitsandbytes installed seems to be old. Please install 0.39.0 or later. / PagedAdamWが定義されていません。インストールされているbitsandbytesのバージョンが古いようです。0.39.0以上をインストールしてください"
            )
        optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)

    elif optimizer_type == "PagedAdamW32bit".lower():
        logger.info(f"use 32-bit PagedAdamW optimizer | {optimizer_kwargs}")
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError("No bitsandbytes / bitsandbytesがインストールされていないようです")
        try:
            optimizer_class = bnb.optim.PagedAdamW32bit
        except AttributeError:
            raise AttributeError(
                "No PagedAdamW32bit. The version of bitsandbytes installed seems to be old. Please install 0.39.0 or later. / PagedAdamW32bitが定義されていません。インストールされているbitsandbytesのバージョンが古いようです。0.39.0以上をインストールしてください"
            )
        optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)

    elif optimizer_type == "SGDNesterov".lower():
        logger.info(f"use SGD with Nesterov optimizer | {optimizer_kwargs}")
        if "momentum" not in optimizer_kwargs:
            logger.info(
                f"SGD with Nesterov must be with momentum, set momentum to 0.9 / SGD with Nesterovはmomentum指定が必須のため0.9に設定します"
            )
            optimizer_kwargs["momentum"] = 0.9

        optimizer_class = torch.optim.SGD
        optimizer = optimizer_class(trainable_params, lr=lr, nesterov=True, **optimizer_kwargs)

    elif optimizer_type.startswith("DAdapt".lower()) or optimizer_type == "Prodigy".lower():
        # check lr and lr_count, and logger.info warning
        actual_lr = lr
        lr_count = 1
        if type(trainable_params) == list and type(trainable_params[0]) == dict:
            lrs = set()
            actual_lr = trainable_params[0].get("lr", actual_lr)
            for group in trainable_params:
                lrs.add(group.get("lr", actual_lr))
            lr_count = len(lrs)

        if actual_lr <= 0.1:
            logger.warning(
                f"learning rate is too low. If using D-Adaptation or Prodigy, set learning rate around 1.0 / 学習率が低すぎるようです。D-AdaptationまたはProdigyの使用時は1.0前後の値を指定してください: lr={actual_lr}"
            )
            logger.warning("recommend option: lr=1.0 / 推奨は1.0です")
        if lr_count > 1:
            logger.warning(
                f"when multiple learning rates are specified with dadaptation (e.g. for Text Encoder and U-Net), only the first one will take effect / D-AdaptationまたはProdigyで複数の学習率を指定した場合(Text EncoderとU-Netなど)、最初の学習率のみが有効になります: lr={actual_lr}"
            )

        if optimizer_type.startswith("DAdapt".lower()):
            # DAdaptation family
            # check dadaptation is installed
            try:
                import dadaptation
                import dadaptation.experimental as experimental
            except ImportError:
                raise ImportError("No dadaptation / dadaptation がインストールされていないようです")

            # set optimizer
            if optimizer_type == "DAdaptation".lower() or optimizer_type == "DAdaptAdamPreprint".lower():
                optimizer_class = experimental.DAdaptAdamPreprint
                logger.info(f"use D-Adaptation AdamPreprint optimizer | {optimizer_kwargs}")
            elif optimizer_type == "DAdaptAdaGrad".lower():
                optimizer_class = dadaptation.DAdaptAdaGrad
                logger.info(f"use D-Adaptation AdaGrad optimizer | {optimizer_kwargs}")
            elif optimizer_type == "DAdaptAdam".lower():
                optimizer_class = dadaptation.DAdaptAdam
                logger.info(f"use D-Adaptation Adam optimizer | {optimizer_kwargs}")
            elif optimizer_type == "DAdaptAdan".lower():
                optimizer_class = dadaptation.DAdaptAdan
                logger.info(f"use D-Adaptation Adan optimizer | {optimizer_kwargs}")
            elif optimizer_type == "DAdaptAdanIP".lower():
                optimizer_class = experimental.DAdaptAdanIP
                logger.info(f"use D-Adaptation AdanIP optimizer | {optimizer_kwargs}")
            elif optimizer_type == "DAdaptLion".lower():
                optimizer_class = dadaptation.DAdaptLion
                logger.info(f"use D-Adaptation Lion optimizer | {optimizer_kwargs}")
            elif optimizer_type == "DAdaptSGD".lower():
                optimizer_class = dadaptation.DAdaptSGD
                logger.info(f"use D-Adaptation SGD optimizer | {optimizer_kwargs}")
            else:
                raise ValueError(f"Unknown optimizer type: {optimizer_type}")

            optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)
        else:
            # Prodigy
            # check Prodigy is installed
            try:
                import prodigyopt
            except ImportError:
                raise ImportError("No Prodigy / Prodigy がインストールされていないようです")

            logger.info(f"use Prodigy optimizer | {optimizer_kwargs}")
            optimizer_class = prodigyopt.Prodigy
            optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)

    elif optimizer_type == "Adafactor".lower():
        # 引数を確認して適宜補正する
        if "relative_step" not in optimizer_kwargs:
            optimizer_kwargs["relative_step"] = True  # default
        if not optimizer_kwargs["relative_step"] and optimizer_kwargs.get("warmup_init", False):
            logger.info(
                f"set relative_step to True because warmup_init is True / warmup_initがTrueのためrelative_stepをTrueにします"
            )
            optimizer_kwargs["relative_step"] = True
        logger.info(f"use Adafactor optimizer | {optimizer_kwargs}")

        if optimizer_kwargs["relative_step"]:
            logger.info(f"relative_step is true / relative_stepがtrueです")
            if lr != 0.0:
                logger.warning(f"learning rate is used as initial_lr / 指定したlearning rateはinitial_lrとして使用されます")
            args.learning_rate = None

            # trainable_paramsがgroupだった時の処理:lrを削除する
            if type(trainable_params) == list and type(trainable_params[0]) == dict:
                has_group_lr = False
                for group in trainable_params:
                    p = group.pop("lr", None)
                    has_group_lr = has_group_lr or (p is not None)

                if has_group_lr:
                    # 一応argsを無効にしておく TODO 依存関係が逆転してるのであまり望ましくない
                    logger.warning(f"unet_lr and text_encoder_lr are ignored / unet_lrとtext_encoder_lrは無視されます")
                    args.unet_lr = None
                    args.text_encoder_lr = None

            if args.lr_scheduler != "adafactor":
                logger.info(f"use adafactor_scheduler / スケジューラにadafactor_schedulerを使用します")
            args.lr_scheduler = f"adafactor:{lr}"  # ちょっと微妙だけど

            lr = None
        else:
            if args.max_grad_norm != 0.0:
                logger.warning(
                    f"because max_grad_norm is set, clip_grad_norm is enabled. consider set to 0 / max_grad_normが設定されているためclip_grad_normが有効になります。0に設定して無効にしたほうがいいかもしれません"
                )
            if args.lr_scheduler != "constant_with_warmup":
                logger.warning(f"constant_with_warmup will be good / スケジューラはconstant_with_warmupが良いかもしれません")
            if optimizer_kwargs.get("clip_threshold", 1.0) != 1.0:
                logger.warning(f"clip_threshold=1.0 will be good / clip_thresholdは1.0が良いかもしれません")

        optimizer_class = transformers.optimization.Adafactor
        optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)

    elif optimizer_type == "AdamW".lower():
        logger.info(f"use AdamW optimizer | {optimizer_kwargs}")
        optimizer_class = torch.optim.AdamW
        optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)

    if optimizer is None:
        # 任意のoptimizerを使う
        optimizer_type = args.optimizer_type  # lowerでないやつ(微妙)
        logger.info(f"use {optimizer_type} | {optimizer_kwargs}")
        if "." not in optimizer_type:
            optimizer_module = torch.optim
        else:
            values = optimizer_type.split(".")
            optimizer_module = importlib.import_module(".".join(values[:-1]))
            optimizer_type = values[-1]

        optimizer_class = getattr(optimizer_module, optimizer_type)
        optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)

    optimizer_name = optimizer_class.__module__ + "." + optimizer_class.__name__
    optimizer_args = ",".join([f"{k}={v}" for k, v in optimizer_kwargs.items()])

    return optimizer_name, optimizer_args, optimizer


# Modified version of get_scheduler() function from diffusers.optimizer.get_scheduler
# Add some checking and features to the original function.


def get_scheduler_fix(args, optimizer: Optimizer, num_processes: int):
    """
    Unified API to get any scheduler from its name.
    """
    name = args.lr_scheduler
    num_warmup_steps: Optional[int] = args.lr_warmup_steps
    num_training_steps = args.max_train_steps * num_processes  # * args.gradient_accumulation_steps
    num_cycles = args.lr_scheduler_num_cycles
    power = args.lr_scheduler_power

    lr_scheduler_kwargs = {}  # get custom lr_scheduler kwargs
    if args.lr_scheduler_args is not None and len(args.lr_scheduler_args) > 0:
        for arg in args.lr_scheduler_args:
            key, value = arg.split("=")
            value = ast.literal_eval(value)
            lr_scheduler_kwargs[key] = value

    def wrap_check_needless_num_warmup_steps(return_vals):
        if num_warmup_steps is not None and num_warmup_steps != 0:
            raise ValueError(f"{name} does not require `num_warmup_steps`. Set None or 0.")
        return return_vals

    # using any lr_scheduler from other library
    if args.lr_scheduler_type:
        lr_scheduler_type = args.lr_scheduler_type
        logger.info(f"use {lr_scheduler_type} | {lr_scheduler_kwargs} as lr_scheduler")
        if "." not in lr_scheduler_type:  # default to use torch.optim
            lr_scheduler_module = torch.optim.lr_scheduler
        else:
            values = lr_scheduler_type.split(".")
            lr_scheduler_module = importlib.import_module(".".join(values[:-1]))
            lr_scheduler_type = values[-1]
        lr_scheduler_class = getattr(lr_scheduler_module, lr_scheduler_type)
        lr_scheduler = lr_scheduler_class(optimizer, **lr_scheduler_kwargs)
        return wrap_check_needless_num_warmup_steps(lr_scheduler)

    if name.startswith("adafactor"):
        assert (
            type(optimizer) == transformers.optimization.Adafactor
        ), f"adafactor scheduler must be used with Adafactor optimizer / adafactor schedulerはAdafactorオプティマイザと同時に使ってください"
        initial_lr = float(name.split(":")[1])
        # logger.info(f"adafactor scheduler init lr {initial_lr}")
        return wrap_check_needless_num_warmup_steps(transformers.optimization.AdafactorSchedule(optimizer, initial_lr))

    name = SchedulerType(name)
    schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name]

    if name == SchedulerType.CONSTANT:
        return wrap_check_needless_num_warmup_steps(schedule_func(optimizer, **lr_scheduler_kwargs))

    if name == SchedulerType.PIECEWISE_CONSTANT:
        return schedule_func(optimizer, **lr_scheduler_kwargs)  # step_rules and last_epoch are given as kwargs

    # All other schedulers require `num_warmup_steps`
    if num_warmup_steps is None:
        raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument.")

    if name == SchedulerType.CONSTANT_WITH_WARMUP:
        return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, **lr_scheduler_kwargs)

    # All other schedulers require `num_training_steps`
    if num_training_steps is None:
        raise ValueError(f"{name} requires `num_training_steps`, please provide that argument.")

    if name == SchedulerType.COSINE_WITH_RESTARTS:
        return schedule_func(
            optimizer,
            num_warmup_steps=num_warmup_steps,
            num_training_steps=num_training_steps,
            num_cycles=num_cycles,
            **lr_scheduler_kwargs,
        )

    if name == SchedulerType.POLYNOMIAL:
        return schedule_func(
            optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, power=power, **lr_scheduler_kwargs
        )

    return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, **lr_scheduler_kwargs)


def prepare_dataset_args(args: argparse.Namespace, support_metadata: bool):
    # backward compatibility
    if args.caption_extention is not None:
        args.caption_extension = args.caption_extention
        args.caption_extention = None

    # assert args.resolution is not None, f"resolution is required / resolution(解像度)を指定してください"
    if args.resolution is not None:
        args.resolution = tuple([int(r) for r in args.resolution.split(",")])
        if len(args.resolution) == 1:
            args.resolution = (args.resolution[0], args.resolution[0])
        assert (
            len(args.resolution) == 2
        ), f"resolution must be 'size' or 'width,height' / resolution(解像度)は'サイズ'または'幅','高さ'で指定してください: {args.resolution}"

    if args.face_crop_aug_range is not None:
        args.face_crop_aug_range = tuple([float(r) for r in args.face_crop_aug_range.split(",")])
        assert (
            len(args.face_crop_aug_range) == 2 and args.face_crop_aug_range[0] <= args.face_crop_aug_range[1]
        ), f"face_crop_aug_range must be two floats / face_crop_aug_rangeは'下限,上限'で指定してください: {args.face_crop_aug_range}"
    else:
        args.face_crop_aug_range = None

    if support_metadata:
        if args.in_json is not None and (args.color_aug or args.random_crop):
            logger.warning(
                f"latents in npz is ignored when color_aug or random_crop is True / color_augまたはrandom_cropを有効にした場合、npzファイルのlatentsは無視されます"
            )


def load_tokenizer(args: argparse.Namespace):
    logger.info("prepare tokenizer")
    original_path = V2_STABLE_DIFFUSION_PATH if args.v2 else TOKENIZER_PATH

    tokenizer: CLIPTokenizer = None
    if args.tokenizer_cache_dir:
        local_tokenizer_path = os.path.join(args.tokenizer_cache_dir, original_path.replace("/", "_"))
        if os.path.exists(local_tokenizer_path):
            logger.info(f"load tokenizer from cache: {local_tokenizer_path}")
            tokenizer = CLIPTokenizer.from_pretrained(local_tokenizer_path)  # same for v1 and v2

    if tokenizer is None:
        if args.v2:
            tokenizer = CLIPTokenizer.from_pretrained(original_path, subfolder="tokenizer")
        else:
            tokenizer = CLIPTokenizer.from_pretrained(original_path)

    if hasattr(args, "max_token_length") and args.max_token_length is not None:
        logger.info(f"update token length: {args.max_token_length}")

    if args.tokenizer_cache_dir and not os.path.exists(local_tokenizer_path):
        logger.info(f"save Tokenizer to cache: {local_tokenizer_path}")
        tokenizer.save_pretrained(local_tokenizer_path)

    return tokenizer


def prepare_accelerator(args: argparse.Namespace):
    """
    this function also prepares deepspeed plugin
    """

    if args.logging_dir is None:
        logging_dir = None
    else:
        log_prefix = "" if args.log_prefix is None else args.log_prefix
        logging_dir = args.logging_dir + "/" + log_prefix + time.strftime("%Y%m%d%H%M%S", time.localtime())

    if args.log_with is None:
        if logging_dir is not None:
            log_with = "tensorboard"
        else:
            log_with = None
    else:
        log_with = args.log_with
        if log_with in ["tensorboard", "all"]:
            if logging_dir is None:
                raise ValueError(
                    "logging_dir is required when log_with is tensorboard / Tensorboardを使う場合、logging_dirを指定してください"
                )
        if log_with in ["wandb", "all"]:
            try:
                import wandb
            except ImportError:
                raise ImportError("No wandb / wandb がインストールされていないようです")
            if logging_dir is not None:
                os.makedirs(logging_dir, exist_ok=True)
                os.environ["WANDB_DIR"] = logging_dir
            if args.wandb_api_key is not None:
                wandb.login(key=args.wandb_api_key)

    # torch.compile のオプション。 NO の場合は torch.compile は使わない
    dynamo_backend = "NO"
    if args.torch_compile:
        dynamo_backend = args.dynamo_backend

    kwargs_handlers = (
        InitProcessGroupKwargs(timeout=datetime.timedelta(minutes=args.ddp_timeout)) if args.ddp_timeout else None,
        (
            DistributedDataParallelKwargs(
                gradient_as_bucket_view=args.ddp_gradient_as_bucket_view, static_graph=args.ddp_static_graph
            )
            if args.ddp_gradient_as_bucket_view or args.ddp_static_graph
            else None
        ),
    )
    kwargs_handlers = list(filter(lambda x: x is not None, kwargs_handlers))
    deepspeed_plugin = deepspeed_utils.prepare_deepspeed_plugin(args)

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=log_with,
        project_dir=logging_dir,
        kwargs_handlers=kwargs_handlers,
        dynamo_backend=dynamo_backend,
        deepspeed_plugin=deepspeed_plugin,
    )
    print("accelerator device:", accelerator.device)
    return accelerator


def prepare_dtype(args: argparse.Namespace):
    weight_dtype = torch.float32
    if args.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif args.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    save_dtype = None
    if args.save_precision == "fp16":
        save_dtype = torch.float16
    elif args.save_precision == "bf16":
        save_dtype = torch.bfloat16
    elif args.save_precision == "float":
        save_dtype = torch.float32

    return weight_dtype, save_dtype


def _load_target_model(args: argparse.Namespace, weight_dtype, device="cpu", unet_use_linear_projection_in_v2=False):
    name_or_path = args.pretrained_model_name_or_path
    name_or_path = os.path.realpath(name_or_path) if os.path.islink(name_or_path) else name_or_path
    load_stable_diffusion_format = os.path.isfile(name_or_path)  # determine SD or Diffusers
    if load_stable_diffusion_format:
        logger.info(f"load StableDiffusion checkpoint: {name_or_path}")
        text_encoder, vae, unet = model_util.load_models_from_stable_diffusion_checkpoint(
            args.v2, name_or_path, device, unet_use_linear_projection_in_v2=unet_use_linear_projection_in_v2
        )
    else:
        # Diffusers model is loaded to CPU
        logger.info(f"load Diffusers pretrained models: {name_or_path}")
        try:
            pipe = StableDiffusionPipeline.from_pretrained(name_or_path, tokenizer=None, safety_checker=None)
        except EnvironmentError as ex:
            logger.error(
                f"model is not found as a file or in Hugging Face, perhaps file name is wrong? / 指定したモデル名のファイル、またはHugging Faceのモデルが見つかりません。ファイル名が誤っているかもしれません: {name_or_path}"
            )
            raise ex
        text_encoder = pipe.text_encoder
        vae = pipe.vae
        unet = pipe.unet
        del pipe

        # Diffusers U-Net to original U-Net
        # TODO *.ckpt/*.safetensorsのv2と同じ形式にここで変換すると良さそう
        # logger.info(f"unet config: {unet.config}")
        original_unet = UNet2DConditionModel(
            unet.config.sample_size,
            unet.config.attention_head_dim,
            unet.config.cross_attention_dim,
            unet.config.use_linear_projection,
            unet.config.upcast_attention,
        )
        original_unet.load_state_dict(unet.state_dict())
        unet = original_unet
        logger.info("U-Net converted to original U-Net")

    # VAEを読み込む
    if args.vae is not None:
        vae = model_util.load_vae(args.vae, weight_dtype)
        logger.info("additional VAE loaded")

    return text_encoder, vae, unet, load_stable_diffusion_format


def load_target_model(args, weight_dtype, accelerator, unet_use_linear_projection_in_v2=False):
    for pi in range(accelerator.state.num_processes):
        if pi == accelerator.state.local_process_index:
            logger.info(f"loading model for process {accelerator.state.local_process_index}/{accelerator.state.num_processes}")

            text_encoder, vae, unet, load_stable_diffusion_format = _load_target_model(
                args,
                weight_dtype,
                accelerator.device if args.lowram else "cpu",
                unet_use_linear_projection_in_v2=unet_use_linear_projection_in_v2,
            )
            # work on low-ram device
            if args.lowram:
                text_encoder.to(accelerator.device)
                unet.to(accelerator.device)
                vae.to(accelerator.device)

            clean_memory_on_device(accelerator.device)
        accelerator.wait_for_everyone()
    return text_encoder, vae, unet, load_stable_diffusion_format


def patch_accelerator_for_fp16_training(accelerator):
    org_unscale_grads = accelerator.scaler._unscale_grads_

    def _unscale_grads_replacer(optimizer, inv_scale, found_inf, allow_fp16):
        return org_unscale_grads(optimizer, inv_scale, found_inf, True)

    accelerator.scaler._unscale_grads_ = _unscale_grads_replacer


def get_hidden_states(args: argparse.Namespace, input_ids, tokenizer, text_encoder, weight_dtype=None):
    # with no_token_padding, the length is not max length, return result immediately
    if input_ids.size()[-1] != tokenizer.model_max_length:
        return text_encoder(input_ids)[0]

    # input_ids: b,n,77
    b_size = input_ids.size()[0]
    input_ids = input_ids.reshape((-1, tokenizer.model_max_length))  # batch_size*3, 77

    if args.clip_skip is None:
        encoder_hidden_states = text_encoder(input_ids)[0]
    else:
        enc_out = text_encoder(input_ids, output_hidden_states=True, return_dict=True)
        encoder_hidden_states = enc_out["hidden_states"][-args.clip_skip]
        encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states)

    # bs*3, 77, 768 or 1024
    encoder_hidden_states = encoder_hidden_states.reshape((b_size, -1, encoder_hidden_states.shape[-1]))

    if args.max_token_length is not None:
        if args.v2:
            # v2: <BOS>...<EOS> <PAD> ... の三連を <BOS>...<EOS> <PAD> ... へ戻す 正直この実装でいいのかわからん
            states_list = [encoder_hidden_states[:, 0].unsqueeze(1)]  # <BOS>
            for i in range(1, args.max_token_length, tokenizer.model_max_length):
                chunk = encoder_hidden_states[:, i : i + tokenizer.model_max_length - 2]  # <BOS> の後から 最後の前まで
                if i > 0:
                    for j in range(len(chunk)):
                        if input_ids[j, 1] == tokenizer.eos_token:  # 空、つまり <BOS> <EOS> <PAD> ...のパターン
                            chunk[j, 0] = chunk[j, 1]  # 次の <PAD> の値をコピーする
                states_list.append(chunk)  # <BOS> の後から <EOS> の前まで
            states_list.append(encoder_hidden_states[:, -1].unsqueeze(1))  # <EOS> か <PAD> のどちらか
            encoder_hidden_states = torch.cat(states_list, dim=1)
        else:
            # v1: <BOS>...<EOS> の三連を <BOS>...<EOS> へ戻す
            states_list = [encoder_hidden_states[:, 0].unsqueeze(1)]  # <BOS>
            for i in range(1, args.max_token_length, tokenizer.model_max_length):
                states_list.append(
                    encoder_hidden_states[:, i : i + tokenizer.model_max_length - 2]
                )  # <BOS> の後から <EOS> の前まで
            states_list.append(encoder_hidden_states[:, -1].unsqueeze(1))  # <EOS>
            encoder_hidden_states = torch.cat(states_list, dim=1)

    if weight_dtype is not None:
        # this is required for additional network training
        encoder_hidden_states = encoder_hidden_states.to(weight_dtype)

    return encoder_hidden_states


def pool_workaround(
    text_encoder: CLIPTextModelWithProjection, last_hidden_state: torch.Tensor, input_ids: torch.Tensor, eos_token_id: int
):
    r"""
    workaround for CLIP's pooling bug: it returns the hidden states for the max token id as the pooled output
    instead of the hidden states for the EOS token
    If we use Textual Inversion, we need to use the hidden states for the EOS token as the pooled output

    Original code from CLIP's pooling function:

    \# text_embeds.shape = [batch_size, sequence_length, transformer.width]
    \# take features from the eot embedding (eot_token is the highest number in each sequence)
    \# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
    pooled_output = last_hidden_state[
        torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
        input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
    ]
    """

    # input_ids: b*n,77
    # find index for EOS token

    # Following code is not working if one of the input_ids has multiple EOS tokens (very odd case)
    # eos_token_index = torch.where(input_ids == eos_token_id)[1]
    # eos_token_index = eos_token_index.to(device=last_hidden_state.device)

    # Create a mask where the EOS tokens are
    eos_token_mask = (input_ids == eos_token_id).int()

    # Use argmax to find the last index of the EOS token for each element in the batch
    eos_token_index = torch.argmax(eos_token_mask, dim=1)  # this will be 0 if there is no EOS token, it's fine
    eos_token_index = eos_token_index.to(device=last_hidden_state.device)

    # get hidden states for EOS token
    pooled_output = last_hidden_state[torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), eos_token_index]

    # apply projection: projection may be of different dtype than last_hidden_state
    pooled_output = text_encoder.text_projection(pooled_output.to(text_encoder.text_projection.weight.dtype))
    pooled_output = pooled_output.to(last_hidden_state.dtype)

    return pooled_output


def get_hidden_states_sdxl(
    max_token_length: int,
    input_ids1: torch.Tensor,
    input_ids2: torch.Tensor,
    tokenizer1: CLIPTokenizer,
    tokenizer2: CLIPTokenizer,
    text_encoder1: CLIPTextModel,
    text_encoder2: CLIPTextModelWithProjection,
    weight_dtype: Optional[str] = None,
    accelerator: Optional[Accelerator] = None,
):
    # input_ids: b,n,77 -> b*n, 77
    b_size = input_ids1.size()[0]
    input_ids1 = input_ids1.reshape((-1, tokenizer1.model_max_length))  # batch_size*n, 77
    input_ids2 = input_ids2.reshape((-1, tokenizer2.model_max_length))  # batch_size*n, 77

    # text_encoder1
    enc_out = text_encoder1(input_ids1, output_hidden_states=True, return_dict=True)
    hidden_states1 = enc_out["hidden_states"][11]

    # text_encoder2
    enc_out = text_encoder2(input_ids2, output_hidden_states=True, return_dict=True)
    hidden_states2 = enc_out["hidden_states"][-2]  # penuultimate layer

    # pool2 = enc_out["text_embeds"]
    unwrapped_text_encoder2 = text_encoder2 if accelerator is None else accelerator.unwrap_model(text_encoder2)
    pool2 = pool_workaround(unwrapped_text_encoder2, enc_out["last_hidden_state"], input_ids2, tokenizer2.eos_token_id)

    # b*n, 77, 768 or 1280 -> b, n*77, 768 or 1280
    n_size = 1 if max_token_length is None else max_token_length // 75
    hidden_states1 = hidden_states1.reshape((b_size, -1, hidden_states1.shape[-1]))
    hidden_states2 = hidden_states2.reshape((b_size, -1, hidden_states2.shape[-1]))

    if max_token_length is not None:
        # bs*3, 77, 768 or 1024
        # encoder1: <BOS>...<EOS> の三連を <BOS>...<EOS> へ戻す
        states_list = [hidden_states1[:, 0].unsqueeze(1)]  # <BOS>
        for i in range(1, max_token_length, tokenizer1.model_max_length):
            states_list.append(hidden_states1[:, i : i + tokenizer1.model_max_length - 2])  # <BOS> の後から <EOS> の前まで
        states_list.append(hidden_states1[:, -1].unsqueeze(1))  # <EOS>
        hidden_states1 = torch.cat(states_list, dim=1)

        # v2: <BOS>...<EOS> <PAD> ... の三連を <BOS>...<EOS> <PAD> ... へ戻す 正直この実装でいいのかわからん
        states_list = [hidden_states2[:, 0].unsqueeze(1)]  # <BOS>
        for i in range(1, max_token_length, tokenizer2.model_max_length):
            chunk = hidden_states2[:, i : i + tokenizer2.model_max_length - 2]  # <BOS> の後から 最後の前まで
            # this causes an error:
            # RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation
            # if i > 1:
            #     for j in range(len(chunk)):  # batch_size
            #         if input_ids2[n_index + j * n_size, 1] == tokenizer2.eos_token_id:  # 空、つまり <BOS> <EOS> <PAD> ...のパターン
            #             chunk[j, 0] = chunk[j, 1]  # 次の <PAD> の値をコピーする
            states_list.append(chunk)  # <BOS> の後から <EOS> の前まで
        states_list.append(hidden_states2[:, -1].unsqueeze(1))  # <EOS> か <PAD> のどちらか
        hidden_states2 = torch.cat(states_list, dim=1)

        # pool はnの最初のものを使う
        pool2 = pool2[::n_size]

    if weight_dtype is not None:
        # this is required for additional network training
        hidden_states1 = hidden_states1.to(weight_dtype)
        hidden_states2 = hidden_states2.to(weight_dtype)

    return hidden_states1, hidden_states2, pool2


def default_if_none(value, default):
    return default if value is None else value


def get_epoch_ckpt_name(args: argparse.Namespace, ext: str, epoch_no: int):
    model_name = default_if_none(args.output_name, DEFAULT_EPOCH_NAME)
    return EPOCH_FILE_NAME.format(model_name, epoch_no) + ext


def get_step_ckpt_name(args: argparse.Namespace, ext: str, step_no: int):
    model_name = default_if_none(args.output_name, DEFAULT_STEP_NAME)
    return STEP_FILE_NAME.format(model_name, step_no) + ext


def get_last_ckpt_name(args: argparse.Namespace, ext: str):
    model_name = default_if_none(args.output_name, DEFAULT_LAST_OUTPUT_NAME)
    return model_name + ext


def get_remove_epoch_no(args: argparse.Namespace, epoch_no: int):
    if args.save_last_n_epochs is None:
        return None

    remove_epoch_no = epoch_no - args.save_every_n_epochs * args.save_last_n_epochs
    if remove_epoch_no < 0:
        return None
    return remove_epoch_no


def get_remove_step_no(args: argparse.Namespace, step_no: int):
    if args.save_last_n_steps is None:
        return None

    # last_n_steps前のstep_noから、save_every_n_stepsの倍数のstep_noを計算して削除する
    # save_every_n_steps=10, save_last_n_steps=30の場合、50step目には30step分残し、10step目を削除する
    remove_step_no = step_no - args.save_last_n_steps - 1
    remove_step_no = remove_step_no - (remove_step_no % args.save_every_n_steps)
    if remove_step_no < 0:
        return None
    return remove_step_no


# epochとstepの保存、メタデータにepoch/stepが含まれ引数が同じになるため、統合している
# on_epoch_end: Trueならepoch終了時、Falseならstep経過時
def save_sd_model_on_epoch_end_or_stepwise(
    args: argparse.Namespace,
    on_epoch_end: bool,
    accelerator,
    src_path: str,
    save_stable_diffusion_format: bool,
    use_safetensors: bool,
    save_dtype: torch.dtype,
    epoch: int,
    num_train_epochs: int,
    global_step: int,
    text_encoder,
    unet,
    vae,
):
    def sd_saver(ckpt_file, epoch_no, global_step):
        sai_metadata = get_sai_model_spec(None, args, False, False, False, is_stable_diffusion_ckpt=True)
        model_util.save_stable_diffusion_checkpoint(
            args.v2, ckpt_file, text_encoder, unet, src_path, epoch_no, global_step, sai_metadata, save_dtype, vae
        )

    def diffusers_saver(out_dir):
        model_util.save_diffusers_checkpoint(
            args.v2, out_dir, text_encoder, unet, src_path, vae=vae, use_safetensors=use_safetensors
        )

    save_sd_model_on_epoch_end_or_stepwise_common(
        args,
        on_epoch_end,
        accelerator,
        save_stable_diffusion_format,
        use_safetensors,
        epoch,
        num_train_epochs,
        global_step,
        sd_saver,
        diffusers_saver,
    )


def save_sd_model_on_epoch_end_or_stepwise_common(
    args: argparse.Namespace,
    on_epoch_end: bool,
    accelerator,
    save_stable_diffusion_format: bool,
    use_safetensors: bool,
    epoch: int,
    num_train_epochs: int,
    global_step: int,
    sd_saver,
    diffusers_saver,
):
    if on_epoch_end:
        epoch_no = epoch + 1
        saving = epoch_no % args.save_every_n_epochs == 0 and epoch_no < num_train_epochs
        if not saving:
            return

        model_name = default_if_none(args.output_name, DEFAULT_EPOCH_NAME)
        remove_no = get_remove_epoch_no(args, epoch_no)
    else:
        # 保存するか否かは呼び出し側で判断済み

        model_name = default_if_none(args.output_name, DEFAULT_STEP_NAME)
        epoch_no = epoch  # 例: 最初のepochの途中で保存したら0になる、SDモデルに保存される
        remove_no = get_remove_step_no(args, global_step)

    os.makedirs(args.output_dir, exist_ok=True)
    if save_stable_diffusion_format:
        ext = ".safetensors" if use_safetensors else ".ckpt"

        if on_epoch_end:
            ckpt_name = get_epoch_ckpt_name(args, ext, epoch_no)
        else:
            ckpt_name = get_step_ckpt_name(args, ext, global_step)

        ckpt_file = os.path.join(args.output_dir, ckpt_name)
        logger.info("")
        logger.info(f"saving checkpoint: {ckpt_file}")
        sd_saver(ckpt_file, epoch_no, global_step)

        if args.huggingface_repo_id is not None:
            huggingface_util.upload(args, ckpt_file, "/" + ckpt_name)

        # remove older checkpoints
        if remove_no is not None:
            if on_epoch_end:
                remove_ckpt_name = get_epoch_ckpt_name(args, ext, remove_no)
            else:
                remove_ckpt_name = get_step_ckpt_name(args, ext, remove_no)

            remove_ckpt_file = os.path.join(args.output_dir, remove_ckpt_name)
            if os.path.exists(remove_ckpt_file):
                logger.info(f"removing old checkpoint: {remove_ckpt_file}")
                os.remove(remove_ckpt_file)

    else:
        if on_epoch_end:
            out_dir = os.path.join(args.output_dir, EPOCH_DIFFUSERS_DIR_NAME.format(model_name, epoch_no))
        else:
            out_dir = os.path.join(args.output_dir, STEP_DIFFUSERS_DIR_NAME.format(model_name, global_step))

        logger.info("")
        logger.info(f"saving model: {out_dir}")
        diffusers_saver(out_dir)

        if args.huggingface_repo_id is not None:
            huggingface_util.upload(args, out_dir, "/" + model_name)

        # remove older checkpoints
        if remove_no is not None:
            if on_epoch_end:
                remove_out_dir = os.path.join(args.output_dir, EPOCH_DIFFUSERS_DIR_NAME.format(model_name, remove_no))
            else:
                remove_out_dir = os.path.join(args.output_dir, STEP_DIFFUSERS_DIR_NAME.format(model_name, remove_no))

            if os.path.exists(remove_out_dir):
                logger.info(f"removing old model: {remove_out_dir}")
                shutil.rmtree(remove_out_dir)

    if args.save_state:
        if on_epoch_end:
            save_and_remove_state_on_epoch_end(args, accelerator, epoch_no)
        else:
            save_and_remove_state_stepwise(args, accelerator, global_step)


def save_and_remove_state_on_epoch_end(args: argparse.Namespace, accelerator, epoch_no):
    model_name = default_if_none(args.output_name, DEFAULT_EPOCH_NAME)

    logger.info("")
    logger.info(f"saving state at epoch {epoch_no}")
    os.makedirs(args.output_dir, exist_ok=True)

    state_dir = os.path.join(args.output_dir, EPOCH_STATE_NAME.format(model_name, epoch_no))
    accelerator.save_state(state_dir)
    if args.save_state_to_huggingface:
        logger.info("uploading state to huggingface.")
        huggingface_util.upload(args, state_dir, "/" + EPOCH_STATE_NAME.format(model_name, epoch_no))

    last_n_epochs = args.save_last_n_epochs_state if args.save_last_n_epochs_state else args.save_last_n_epochs
    if last_n_epochs is not None:
        remove_epoch_no = epoch_no - args.save_every_n_epochs * last_n_epochs
        state_dir_old = os.path.join(args.output_dir, EPOCH_STATE_NAME.format(model_name, remove_epoch_no))
        if os.path.exists(state_dir_old):
            logger.info(f"removing old state: {state_dir_old}")
            shutil.rmtree(state_dir_old)


def save_and_remove_state_stepwise(args: argparse.Namespace, accelerator, step_no):
    model_name = default_if_none(args.output_name, DEFAULT_STEP_NAME)

    logger.info("")
    logger.info(f"saving state at step {step_no}")
    os.makedirs(args.output_dir, exist_ok=True)

    state_dir = os.path.join(args.output_dir, STEP_STATE_NAME.format(model_name, step_no))
    accelerator.save_state(state_dir)
    if args.save_state_to_huggingface:
        logger.info("uploading state to huggingface.")
        huggingface_util.upload(args, state_dir, "/" + STEP_STATE_NAME.format(model_name, step_no))

    last_n_steps = args.save_last_n_steps_state if args.save_last_n_steps_state else args.save_last_n_steps
    if last_n_steps is not None:
        # last_n_steps前のstep_noから、save_every_n_stepsの倍数のstep_noを計算して削除する
        remove_step_no = step_no - last_n_steps - 1
        remove_step_no = remove_step_no - (remove_step_no % args.save_every_n_steps)

        if remove_step_no > 0:
            state_dir_old = os.path.join(args.output_dir, STEP_STATE_NAME.format(model_name, remove_step_no))
            if os.path.exists(state_dir_old):
                logger.info(f"removing old state: {state_dir_old}")
                shutil.rmtree(state_dir_old)


def save_state_on_train_end(args: argparse.Namespace, accelerator):
    model_name = default_if_none(args.output_name, DEFAULT_LAST_OUTPUT_NAME)

    logger.info("")
    logger.info("saving last state.")
    os.makedirs(args.output_dir, exist_ok=True)

    state_dir = os.path.join(args.output_dir, LAST_STATE_NAME.format(model_name))
    accelerator.save_state(state_dir)

    if args.save_state_to_huggingface:
        logger.info("uploading last state to huggingface.")
        huggingface_util.upload(args, state_dir, "/" + LAST_STATE_NAME.format(model_name))


def save_sd_model_on_train_end(
    args: argparse.Namespace,
    src_path: str,
    save_stable_diffusion_format: bool,
    use_safetensors: bool,
    save_dtype: torch.dtype,
    epoch: int,
    global_step: int,
    text_encoder,
    unet,
    vae,
):
    def sd_saver(ckpt_file, epoch_no, global_step):
        sai_metadata = get_sai_model_spec(None, args, False, False, False, is_stable_diffusion_ckpt=True)
        model_util.save_stable_diffusion_checkpoint(
            args.v2, ckpt_file, text_encoder, unet, src_path, epoch_no, global_step, sai_metadata, save_dtype, vae
        )

    def diffusers_saver(out_dir):
        model_util.save_diffusers_checkpoint(
            args.v2, out_dir, text_encoder, unet, src_path, vae=vae, use_safetensors=use_safetensors
        )

    save_sd_model_on_train_end_common(
        args, save_stable_diffusion_format, use_safetensors, epoch, global_step, sd_saver, diffusers_saver
    )


def save_sd_model_on_train_end_common(
    args: argparse.Namespace,
    save_stable_diffusion_format: bool,
    use_safetensors: bool,
    epoch: int,
    global_step: int,
    sd_saver,
    diffusers_saver,
):
    model_name = default_if_none(args.output_name, DEFAULT_LAST_OUTPUT_NAME)

    if save_stable_diffusion_format:
        os.makedirs(args.output_dir, exist_ok=True)

        ckpt_name = model_name + (".safetensors" if use_safetensors else ".ckpt")
        ckpt_file = os.path.join(args.output_dir, ckpt_name)

        logger.info(f"save trained model as StableDiffusion checkpoint to {ckpt_file}")
        sd_saver(ckpt_file, epoch, global_step)

        if args.huggingface_repo_id is not None:
            huggingface_util.upload(args, ckpt_file, "/" + ckpt_name, force_sync_upload=True)
    else:
        out_dir = os.path.join(args.output_dir, model_name)
        os.makedirs(out_dir, exist_ok=True)

        logger.info(f"save trained model as Diffusers to {out_dir}")
        diffusers_saver(out_dir)

        if args.huggingface_repo_id is not None:
            huggingface_util.upload(args, out_dir, "/" + model_name, force_sync_upload=True)


def get_timesteps_and_huber_c(args, min_timestep, max_timestep, noise_scheduler, b_size, device):

    # TODO: if a huber loss is selected, it will use constant timesteps for each batch
    # as. In the future there may be a smarter way

    if args.loss_type == "huber" or args.loss_type == "smooth_l1":
        timesteps = torch.randint(min_timestep, max_timestep, (1,), device="cpu")
        timestep = timesteps.item()

        if args.huber_schedule == "exponential":
            alpha = -math.log(args.huber_c) / noise_scheduler.config.num_train_timesteps
            huber_c = math.exp(-alpha * timestep)
        elif args.huber_schedule == "snr":
            alphas_cumprod = noise_scheduler.alphas_cumprod[timestep]
            sigmas = ((1.0 - alphas_cumprod) / alphas_cumprod) ** 0.5
            huber_c = (1 - args.huber_c) / (1 + sigmas) ** 2 + args.huber_c
        elif args.huber_schedule == "constant":
            huber_c = args.huber_c
        else:
            raise NotImplementedError(f"Unknown Huber loss schedule {args.huber_schedule}!")

        timesteps = timesteps.repeat(b_size).to(device)
    elif args.loss_type == "l2":
        timesteps = torch.randint(min_timestep, max_timestep, (b_size,), device=device)
        huber_c = 1  # may be anything, as it's not used
    else:
        raise NotImplementedError(f"Unknown loss type {args.loss_type}")
    timesteps = timesteps.long()

    return timesteps, huber_c


def get_noise_noisy_latents_and_timesteps(args, noise_scheduler, latents):
    # Sample noise that we'll add to the latents
    noise = torch.randn_like(latents, device=latents.device)
    if args.noise_offset:
        if args.noise_offset_random_strength:
            noise_offset = torch.rand(1, device=latents.device) * args.noise_offset
        else:
            noise_offset = args.noise_offset
        noise = custom_train_functions.apply_noise_offset(latents, noise, noise_offset, args.adaptive_noise_scale)
    if args.multires_noise_iterations:
        noise = custom_train_functions.pyramid_noise_like(
            noise, latents.device, args.multires_noise_iterations, args.multires_noise_discount
        )

    # Sample a random timestep for each image
    b_size = latents.shape[0]
    min_timestep = 0 if args.min_timestep is None else args.min_timestep
    max_timestep = noise_scheduler.config.num_train_timesteps if args.max_timestep is None else args.max_timestep

    timesteps, huber_c = get_timesteps_and_huber_c(args, min_timestep, max_timestep, noise_scheduler, b_size, latents.device)

    # Add noise to the latents according to the noise magnitude at each timestep
    # (this is the forward diffusion process)
    if args.ip_noise_gamma:
        if args.ip_noise_gamma_random_strength:
            strength = torch.rand(1, device=latents.device) * args.ip_noise_gamma
        else:
            strength = args.ip_noise_gamma
        noisy_latents = noise_scheduler.add_noise(latents, noise + strength * torch.randn_like(latents), timesteps)
    else:
        noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

    return noise, noisy_latents, timesteps, huber_c


# NOTE: if you're using the scheduled version, huber_c has to depend on the timesteps already
def conditional_loss(
    model_pred: torch.Tensor, target: torch.Tensor, reduction: str = "mean", loss_type: str = "l2", huber_c: float = 0.1
):

    if loss_type == "l2":
        loss = torch.nn.functional.mse_loss(model_pred, target, reduction=reduction)
    elif loss_type == "huber":
        loss = 2 * huber_c * (torch.sqrt((model_pred - target) ** 2 + huber_c**2) - huber_c)
        if reduction == "mean":
            loss = torch.mean(loss)
        elif reduction == "sum":
            loss = torch.sum(loss)
    elif loss_type == "smooth_l1":
        loss = 2 * (torch.sqrt((model_pred - target) ** 2 + huber_c**2) - huber_c)
        if reduction == "mean":
            loss = torch.mean(loss)
        elif reduction == "sum":
            loss = torch.sum(loss)
    else:
        raise NotImplementedError(f"Unsupported Loss Type {loss_type}")
    return loss


def append_lr_to_logs(logs, lr_scheduler, optimizer_type, including_unet=True):
    names = []
    if including_unet:
        names.append("unet")
    names.append("text_encoder1")
    names.append("text_encoder2")

    append_lr_to_logs_with_names(logs, lr_scheduler, optimizer_type, names)


def append_lr_to_logs_with_names(logs, lr_scheduler, optimizer_type, names):
    lrs = lr_scheduler.get_last_lr()

    for lr_index in range(len(lrs)):
        name = names[lr_index]
        logs["lr/" + name] = float(lrs[lr_index])

        if optimizer_type.lower().startswith("DAdapt".lower()) or optimizer_type.lower() == "Prodigy".lower():
            logs["lr/d*lr/" + name] = (
                lr_scheduler.optimizers[-1].param_groups[lr_index]["d"] * lr_scheduler.optimizers[-1].param_groups[lr_index]["lr"]
            )


# scheduler:
SCHEDULER_LINEAR_START = 0.00085
SCHEDULER_LINEAR_END = 0.0120
SCHEDULER_TIMESTEPS = 1000
SCHEDLER_SCHEDULE = "scaled_linear"


def get_my_scheduler(
    *,
    sample_sampler: str,
    v_parameterization: bool,
):
    sched_init_args = {}
    if sample_sampler == "ddim":
        scheduler_cls = DDIMScheduler
    elif sample_sampler == "ddpm":  # ddpmはおかしくなるのでoptionから外してある
        scheduler_cls = DDPMScheduler
    elif sample_sampler == "pndm":
        scheduler_cls = PNDMScheduler
    elif sample_sampler == "lms" or sample_sampler == "k_lms":
        scheduler_cls = LMSDiscreteScheduler
    elif sample_sampler == "euler" or sample_sampler == "k_euler":
        scheduler_cls = EulerDiscreteScheduler
    elif sample_sampler == "euler_a" or sample_sampler == "k_euler_a":
        scheduler_cls = EulerAncestralDiscreteScheduler
    elif sample_sampler == "dpmsolver" or sample_sampler == "dpmsolver++":
        scheduler_cls = DPMSolverMultistepScheduler
        sched_init_args["algorithm_type"] = sample_sampler
    elif sample_sampler == "dpmsingle":
        scheduler_cls = DPMSolverSinglestepScheduler
    elif sample_sampler == "heun":
        scheduler_cls = HeunDiscreteScheduler
    elif sample_sampler == "dpm_2" or sample_sampler == "k_dpm_2":
        scheduler_cls = KDPM2DiscreteScheduler
    elif sample_sampler == "dpm_2_a" or sample_sampler == "k_dpm_2_a":
        scheduler_cls = KDPM2AncestralDiscreteScheduler
    else:
        scheduler_cls = DDIMScheduler

    if v_parameterization:
        sched_init_args["prediction_type"] = "v_prediction"

    scheduler = scheduler_cls(
        num_train_timesteps=SCHEDULER_TIMESTEPS,
        beta_start=SCHEDULER_LINEAR_START,
        beta_end=SCHEDULER_LINEAR_END,
        beta_schedule=SCHEDLER_SCHEDULE,
        **sched_init_args,
    )

    # clip_sample=Trueにする
    if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is False:
        # logger.info("set clip_sample to True")
        scheduler.config.clip_sample = True

    return scheduler


def sample_images(*args, **kwargs):
    return sample_images_common(StableDiffusionLongPromptWeightingPipeline, *args, **kwargs)


def line_to_prompt_dict(line: str) -> dict:
    # subset of gen_img_diffusers
    prompt_args = line.split(" --")
    prompt_dict = {}
    prompt_dict["prompt"] = prompt_args[0]

    for parg in prompt_args:
        try:
            m = re.match(r"w (\d+)", parg, re.IGNORECASE)
            if m:
                prompt_dict["width"] = int(m.group(1))
                continue

            m = re.match(r"h (\d+)", parg, re.IGNORECASE)
            if m:
                prompt_dict["height"] = int(m.group(1))
                continue

            m = re.match(r"d (\d+)", parg, re.IGNORECASE)
            if m:
                prompt_dict["seed"] = int(m.group(1))
                continue

            m = re.match(r"s (\d+)", parg, re.IGNORECASE)
            if m:  # steps
                prompt_dict["sample_steps"] = max(1, min(1000, int(m.group(1))))
                continue

            m = re.match(r"l ([\d\.]+)", parg, re.IGNORECASE)
            if m:  # scale
                prompt_dict["scale"] = float(m.group(1))
                continue

            m = re.match(r"n (.+)", parg, re.IGNORECASE)
            if m:  # negative prompt
                prompt_dict["negative_prompt"] = m.group(1)
                continue

            m = re.match(r"ss (.+)", parg, re.IGNORECASE)
            if m:
                prompt_dict["sample_sampler"] = m.group(1)
                continue

            m = re.match(r"cn (.+)", parg, re.IGNORECASE)
            if m:
                prompt_dict["controlnet_image"] = m.group(1)
                continue

        except ValueError as ex:
            logger.error(f"Exception in parsing / 解析エラー: {parg}")
            logger.error(ex)

    return prompt_dict


def sample_images_common(
    pipe_class,
    accelerator: Accelerator,
    args: argparse.Namespace,
    epoch,
    steps,
    device,
    vae,
    tokenizer,
    text_encoder,
    unet,
    prompt_replacement=None,
    controlnet=None,
):
    """
    StableDiffusionLongPromptWeightingPipelineの改造版を使うようにしたので、clip skipおよびプロンプトの重みづけに対応した
    """

    if steps == 0:
        if not args.sample_at_first:
            return
    else:
        if args.sample_every_n_steps is None and args.sample_every_n_epochs is None:
            return
        if args.sample_every_n_epochs is not None:
            # sample_every_n_steps は無視する
            if epoch is None or epoch % args.sample_every_n_epochs != 0:
                return
        else:
            if steps % args.sample_every_n_steps != 0 or epoch is not None:  # steps is not divisible or end of epoch
                return

    logger.info("")
    logger.info(f"generating sample images at step / サンプル画像生成 ステップ: {steps}")
    if not os.path.isfile(args.sample_prompts):
        logger.error(f"No prompt file / プロンプトファイルがありません: {args.sample_prompts}")
        return

    distributed_state = PartialState()  # for multi gpu distributed inference. this is a singleton, so it's safe to use it here

    org_vae_device = vae.device  # CPUにいるはず
    vae.to(distributed_state.device)  # distributed_state.device is same as accelerator.device

    # unwrap unet and text_encoder(s)
    unet = accelerator.unwrap_model(unet)
    if isinstance(text_encoder, (list, tuple)):
        text_encoder = [accelerator.unwrap_model(te) for te in text_encoder]
    else:
        text_encoder = accelerator.unwrap_model(text_encoder)

    # read prompts
    if args.sample_prompts.endswith(".txt"):
        with open(args.sample_prompts, "r", encoding="utf-8") as f:
            lines = f.readlines()
        prompts = [line.strip() for line in lines if len(line.strip()) > 0 and line[0] != "#"]
    elif args.sample_prompts.endswith(".toml"):
        with open(args.sample_prompts, "r", encoding="utf-8") as f:
            data = toml.load(f)
        prompts = [dict(**data["prompt"], **subset) for subset in data["prompt"]["subset"]]
    elif args.sample_prompts.endswith(".json"):
        with open(args.sample_prompts, "r", encoding="utf-8") as f:
            prompts = json.load(f)

    # schedulers: dict = {}  cannot find where this is used
    default_scheduler = get_my_scheduler(
        sample_sampler=args.sample_sampler,
        v_parameterization=args.v_parameterization,
    )

    pipeline = pipe_class(
        text_encoder=text_encoder,
        vae=vae,
        unet=unet,
        tokenizer=tokenizer,
        scheduler=default_scheduler,
        safety_checker=None,
        feature_extractor=None,
        requires_safety_checker=False,
        clip_skip=args.clip_skip,
    )
    pipeline.to(distributed_state.device)
    save_dir = args.output_dir + "/sample"
    os.makedirs(save_dir, exist_ok=True)

    # preprocess prompts
    for i in range(len(prompts)):
        prompt_dict = prompts[i]
        if isinstance(prompt_dict, str):
            prompt_dict = line_to_prompt_dict(prompt_dict)
            prompts[i] = prompt_dict
        assert isinstance(prompt_dict, dict)

        # Adds an enumerator to the dict based on prompt position. Used later to name image files. Also cleanup of extra data in original prompt dict.
        prompt_dict["enum"] = i
        prompt_dict.pop("subset", None)

    # save random state to restore later
    rng_state = torch.get_rng_state()
    cuda_rng_state = None
    try:
        cuda_rng_state = torch.cuda.get_rng_state() if torch.cuda.is_available() else None
    except Exception:
        pass

    if distributed_state.num_processes <= 1:
        # If only one device is available, just use the original prompt list. We don't need to care about the distribution of prompts.
        with torch.no_grad():
            for prompt_dict in prompts:
                sample_image_inference(
                    accelerator, args, pipeline, save_dir, prompt_dict, epoch, steps, prompt_replacement, controlnet=controlnet
                )
    else:
        # Creating list with N elements, where each element is a list of prompt_dicts, and N is the number of processes available (number of devices available)
        # prompt_dicts are assigned to lists based on order of processes, to attempt to time the image creation time to match enum order. Probably only works when steps and sampler are identical.
        per_process_prompts = []  # list of lists
        for i in range(distributed_state.num_processes):
            per_process_prompts.append(prompts[i :: distributed_state.num_processes])

        with torch.no_grad():
            with distributed_state.split_between_processes(per_process_prompts) as prompt_dict_lists:
                for prompt_dict in prompt_dict_lists[0]:
                    sample_image_inference(
                        accelerator, args, pipeline, save_dir, prompt_dict, epoch, steps, prompt_replacement, controlnet=controlnet
                    )

    # clear pipeline and cache to reduce vram usage
    del pipeline

    # I'm not sure which of these is the correct way to clear the memory, but accelerator's device is used in the pipeline, so I'm using it here.
    # with torch.cuda.device(torch.cuda.current_device()):
    #     torch.cuda.empty_cache()
    clean_memory_on_device(accelerator.device)

    torch.set_rng_state(rng_state)
    if cuda_rng_state is not None:
        torch.cuda.set_rng_state(cuda_rng_state)
    vae.to(org_vae_device)


def sample_image_inference(
    accelerator: Accelerator,
    args: argparse.Namespace,
    pipeline,
    save_dir,
    prompt_dict,
    epoch,
    steps,
    prompt_replacement,
    controlnet=None,
):
    assert isinstance(prompt_dict, dict)
    negative_prompt = prompt_dict.get("negative_prompt")
    sample_steps = prompt_dict.get("sample_steps", 30)
    width = prompt_dict.get("width", 512)
    height = prompt_dict.get("height", 512)
    scale = prompt_dict.get("scale", 7.5)
    seed = prompt_dict.get("seed")
    controlnet_image = prompt_dict.get("controlnet_image")
    prompt: str = prompt_dict.get("prompt", "")
    sampler_name: str = prompt_dict.get("sample_sampler", args.sample_sampler)

    if prompt_replacement is not None:
        prompt = prompt.replace(prompt_replacement[0], prompt_replacement[1])
        if negative_prompt is not None:
            negative_prompt = negative_prompt.replace(prompt_replacement[0], prompt_replacement[1])

    if seed is not None:
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
    else:
        # True random sample image generation
        torch.seed()
        torch.cuda.seed()

    scheduler = get_my_scheduler(
        sample_sampler=sampler_name,
        v_parameterization=args.v_parameterization,
    )
    pipeline.scheduler = scheduler

    if controlnet_image is not None:
        controlnet_image = Image.open(controlnet_image).convert("RGB")
        controlnet_image = controlnet_image.resize((width, height), Image.LANCZOS)

    height = max(64, height - height % 8)  # round to divisible by 8
    width = max(64, width - width % 8)  # round to divisible by 8
    logger.info(f"prompt: {prompt}")
    logger.info(f"negative_prompt: {negative_prompt}")
    logger.info(f"height: {height}")
    logger.info(f"width: {width}")
    logger.info(f"sample_steps: {sample_steps}")
    logger.info(f"scale: {scale}")
    logger.info(f"sample_sampler: {sampler_name}")
    if seed is not None:
        logger.info(f"seed: {seed}")
    with accelerator.autocast():
        latents = pipeline(
            prompt=prompt,
            height=height,
            width=width,
            num_inference_steps=sample_steps,
            guidance_scale=scale,
            negative_prompt=negative_prompt,
            controlnet=controlnet,
            controlnet_image=controlnet_image,
        )

    with torch.cuda.device(torch.cuda.current_device()):
        torch.cuda.empty_cache()

    image = pipeline.latents_to_image(latents)[0]

    # adding accelerator.wait_for_everyone() here should sync up and ensure that sample images are saved in the same order as the original prompt list
    # but adding 'enum' to the filename should be enough

    ts_str = time.strftime("%Y%m%d%H%M%S", time.localtime())
    num_suffix = f"e{epoch:06d}" if epoch is not None else f"{steps:06d}"
    seed_suffix = "" if seed is None else f"_{seed}"
    i: int = prompt_dict["enum"]
    img_filename = f"{'' if args.output_name is None else args.output_name + '_'}{num_suffix}_{i:02d}_{ts_str}{seed_suffix}.png"
    image.save(os.path.join(save_dir, img_filename))

    # wandb有効時のみログを送信
    try:
        wandb_tracker = accelerator.get_tracker("wandb")
        try:
            import wandb
        except ImportError:  # 事前に一度確認するのでここはエラー出ないはず
            raise ImportError("No wandb / wandb がインストールされていないようです")

        wandb_tracker.log({f"sample_{i}": wandb.Image(image)})
    except:  # wandb 無効時
        pass


# endregion


# region 前処理用


class ImageLoadingDataset(torch.utils.data.Dataset):
    def __init__(self, image_paths):
        self.images = image_paths

    def __len__(self):
        return len(self.images)

    def __getitem__(self, idx):
        img_path = self.images[idx]

        try:
            image = Image.open(img_path).convert("RGB")
            # convert to tensor temporarily so dataloader will accept it
            tensor_pil = transforms.functional.pil_to_tensor(image)
        except Exception as e:
            logger.error(f"Could not load image path / 画像を読み込めません: {img_path}, error: {e}")
            return None

        return (tensor_pil, img_path)


# endregion


# collate_fn用 epoch,stepはmultiprocessing.Value
class collator_class:
    def __init__(self, epoch, step, dataset):
        self.current_epoch = epoch
        self.current_step = step
        self.dataset = dataset  # not used if worker_info is not None, in case of multiprocessing

    def __call__(self, examples):
        worker_info = torch.utils.data.get_worker_info()
        # worker_info is None in the main process
        if worker_info is not None:
            dataset = worker_info.dataset
        else:
            dataset = self.dataset

        # set epoch and step
        dataset.set_current_epoch(self.current_epoch.value)
        dataset.set_current_step(self.current_step.value)
        return examples[0]


class LossRecorder:
    def __init__(self):
        self.loss_list: List[float] = []
        self.loss_total: float = 0.0

    def add(self, *, epoch: int, step: int, loss: float) -> None:
        if epoch == 0:
            self.loss_list.append(loss)
        else:
            self.loss_total -= self.loss_list[step]
            self.loss_list[step] = loss
        self.loss_total += loss

    @property
    def moving_average(self) -> float:
        return self.loss_total / len(self.loss_list)