File size: 10,512 Bytes
008ad02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import logging
import sys
import threading
import torch
from torchvision import transforms
from typing import *
from diffusers import EulerAncestralDiscreteScheduler
import diffusers.schedulers.scheduling_euler_ancestral_discrete
from diffusers.schedulers.scheduling_euler_ancestral_discrete import EulerAncestralDiscreteSchedulerOutput
def fire_in_thread(f, *args, **kwargs):
threading.Thread(target=f, args=args, kwargs=kwargs).start()
def add_logging_arguments(parser):
parser.add_argument(
"--console_log_level",
type=str,
default=None,
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
help="Set the logging level, default is INFO / ログレベルを設定する。デフォルトはINFO",
)
parser.add_argument(
"--console_log_file",
type=str,
default=None,
help="Log to a file instead of stderr / 標準エラー出力ではなくファイルにログを出力する",
)
parser.add_argument("--console_log_simple", action="store_true", help="Simple log output / シンプルなログ出力")
def setup_logging(args=None, log_level=None, reset=False):
if logging.root.handlers:
if reset:
# remove all handlers
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
else:
return
# log_level can be set by the caller or by the args, the caller has priority. If not set, use INFO
if log_level is None and args is not None:
log_level = args.console_log_level
if log_level is None:
log_level = "INFO"
log_level = getattr(logging, log_level)
msg_init = None
if args is not None and args.console_log_file:
handler = logging.FileHandler(args.console_log_file, mode="w")
else:
handler = None
if not args or not args.console_log_simple:
try:
from rich.logging import RichHandler
from rich.console import Console
from rich.logging import RichHandler
handler = RichHandler(console=Console(stderr=True))
except ImportError:
# print("rich is not installed, using basic logging")
msg_init = "rich is not installed, using basic logging"
if handler is None:
handler = logging.StreamHandler(sys.stdout) # same as print
handler.propagate = False
formatter = logging.Formatter(
fmt="%(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
handler.setFormatter(formatter)
logging.root.setLevel(log_level)
logging.root.addHandler(handler)
if msg_init is not None:
logger = logging.getLogger(__name__)
logger.info(msg_init)
# TODO make inf_utils.py
# region Gradual Latent hires fix
class GradualLatent:
def __init__(
self,
ratio,
start_timesteps,
every_n_steps,
ratio_step,
s_noise=1.0,
gaussian_blur_ksize=None,
gaussian_blur_sigma=0.5,
gaussian_blur_strength=0.5,
unsharp_target_x=True,
):
self.ratio = ratio
self.start_timesteps = start_timesteps
self.every_n_steps = every_n_steps
self.ratio_step = ratio_step
self.s_noise = s_noise
self.gaussian_blur_ksize = gaussian_blur_ksize
self.gaussian_blur_sigma = gaussian_blur_sigma
self.gaussian_blur_strength = gaussian_blur_strength
self.unsharp_target_x = unsharp_target_x
def __str__(self) -> str:
return (
f"GradualLatent(ratio={self.ratio}, start_timesteps={self.start_timesteps}, "
+ f"every_n_steps={self.every_n_steps}, ratio_step={self.ratio_step}, s_noise={self.s_noise}, "
+ f"gaussian_blur_ksize={self.gaussian_blur_ksize}, gaussian_blur_sigma={self.gaussian_blur_sigma}, gaussian_blur_strength={self.gaussian_blur_strength}, "
+ f"unsharp_target_x={self.unsharp_target_x})"
)
def apply_unshark_mask(self, x: torch.Tensor):
if self.gaussian_blur_ksize is None:
return x
blurred = transforms.functional.gaussian_blur(x, self.gaussian_blur_ksize, self.gaussian_blur_sigma)
# mask = torch.sigmoid((x - blurred) * self.gaussian_blur_strength)
mask = (x - blurred) * self.gaussian_blur_strength
sharpened = x + mask
return sharpened
def interpolate(self, x: torch.Tensor, resized_size, unsharp=True):
org_dtype = x.dtype
if org_dtype == torch.bfloat16:
x = x.float()
x = torch.nn.functional.interpolate(x, size=resized_size, mode="bicubic", align_corners=False).to(dtype=org_dtype)
# apply unsharp mask / アンシャープマスクを適用する
if unsharp and self.gaussian_blur_ksize:
x = self.apply_unshark_mask(x)
return x
class EulerAncestralDiscreteSchedulerGL(EulerAncestralDiscreteScheduler):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.resized_size = None
self.gradual_latent = None
def set_gradual_latent_params(self, size, gradual_latent: GradualLatent):
self.resized_size = size
self.gradual_latent = gradual_latent
def step(
self,
model_output: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
sample: torch.FloatTensor,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`):
Whether or not to return a
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple.
Returns:
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
If return_dict is `True`,
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned,
otherwise a tuple is returned where the first element is the sample tensor.
"""
if isinstance(timestep, int) or isinstance(timestep, torch.IntTensor) or isinstance(timestep, torch.LongTensor):
raise ValueError(
(
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep."
),
)
if not self.is_scale_input_called:
# logger.warning(
print(
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
"See `StableDiffusionPipeline` for a usage example."
)
if self.step_index is None:
self._init_step_index(timestep)
sigma = self.sigmas[self.step_index]
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
pred_original_sample = sample - sigma * model_output
elif self.config.prediction_type == "v_prediction":
# * c_out + input * c_skip
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
elif self.config.prediction_type == "sample":
raise NotImplementedError("prediction_type not implemented yet: sample")
else:
raise ValueError(f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`")
sigma_from = self.sigmas[self.step_index]
sigma_to = self.sigmas[self.step_index + 1]
sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
# 2. Convert to an ODE derivative
derivative = (sample - pred_original_sample) / sigma
dt = sigma_down - sigma
device = model_output.device
if self.resized_size is None:
prev_sample = sample + derivative * dt
noise = diffusers.schedulers.scheduling_euler_ancestral_discrete.randn_tensor(
model_output.shape, dtype=model_output.dtype, device=device, generator=generator
)
s_noise = 1.0
else:
print("resized_size", self.resized_size, "model_output.shape", model_output.shape, "sample.shape", sample.shape)
s_noise = self.gradual_latent.s_noise
if self.gradual_latent.unsharp_target_x:
prev_sample = sample + derivative * dt
prev_sample = self.gradual_latent.interpolate(prev_sample, self.resized_size)
else:
sample = self.gradual_latent.interpolate(sample, self.resized_size)
derivative = self.gradual_latent.interpolate(derivative, self.resized_size, unsharp=False)
prev_sample = sample + derivative * dt
noise = diffusers.schedulers.scheduling_euler_ancestral_discrete.randn_tensor(
(model_output.shape[0], model_output.shape[1], self.resized_size[0], self.resized_size[1]),
dtype=model_output.dtype,
device=device,
generator=generator,
)
prev_sample = prev_sample + noise * sigma_up * s_noise
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (prev_sample,)
return EulerAncestralDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
# endregion
|