File size: 26,759 Bytes
94326ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
import argparse
import json
import math
import os
import random
import time
from multiprocessing import Value
from types import SimpleNamespace
import toml
from tqdm import tqdm
import torch
from library.device_utils import init_ipex, clean_memory_on_device
init_ipex()
from torch.nn.parallel import DistributedDataParallel as DDP
from accelerate.utils import set_seed
from diffusers import DDPMScheduler, ControlNetModel
from safetensors.torch import load_file
from library import deepspeed_utils, sai_model_spec, sdxl_model_util, sdxl_original_unet, sdxl_train_util
import library.model_util as model_util
import library.train_util as train_util
import library.config_util as config_util
from library.config_util import (
ConfigSanitizer,
BlueprintGenerator,
)
import library.huggingface_util as huggingface_util
import library.custom_train_functions as custom_train_functions
from library.custom_train_functions import (
add_v_prediction_like_loss,
apply_snr_weight,
prepare_scheduler_for_custom_training,
pyramid_noise_like,
apply_noise_offset,
scale_v_prediction_loss_like_noise_prediction,
apply_debiased_estimation,
)
import networks.control_net_lllite as control_net_lllite
from library.utils import setup_logging, add_logging_arguments
setup_logging()
import logging
logger = logging.getLogger(__name__)
# TODO 他のスクリプトと共通化する
def generate_step_logs(args: argparse.Namespace, current_loss, avr_loss, lr_scheduler):
logs = {
"loss/current": current_loss,
"loss/average": avr_loss,
"lr": lr_scheduler.get_last_lr()[0],
}
if args.optimizer_type.lower().startswith("DAdapt".lower()):
logs["lr/d*lr"] = lr_scheduler.optimizers[-1].param_groups[0]["d"] * lr_scheduler.optimizers[-1].param_groups[0]["lr"]
return logs
def train(args):
train_util.verify_training_args(args)
train_util.prepare_dataset_args(args, True)
sdxl_train_util.verify_sdxl_training_args(args)
setup_logging(args, reset=True)
cache_latents = args.cache_latents
use_user_config = args.dataset_config is not None
if args.seed is None:
args.seed = random.randint(0, 2**32)
set_seed(args.seed)
tokenizer1, tokenizer2 = sdxl_train_util.load_tokenizers(args)
# データセットを準備する
blueprint_generator = BlueprintGenerator(ConfigSanitizer(False, False, True, True))
if use_user_config:
logger.info(f"Load dataset config from {args.dataset_config}")
user_config = config_util.load_user_config(args.dataset_config)
ignored = ["train_data_dir", "conditioning_data_dir"]
if any(getattr(args, attr) is not None for attr in ignored):
logger.warning(
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
", ".join(ignored)
)
)
else:
user_config = {
"datasets": [
{
"subsets": config_util.generate_controlnet_subsets_config_by_subdirs(
args.train_data_dir,
args.conditioning_data_dir,
args.caption_extension,
)
}
]
}
blueprint = blueprint_generator.generate(user_config, args, tokenizer=[tokenizer1, tokenizer2])
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
current_epoch = Value("i", 0)
current_step = Value("i", 0)
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)
train_dataset_group.verify_bucket_reso_steps(32)
if args.debug_dataset:
train_util.debug_dataset(train_dataset_group)
return
if len(train_dataset_group) == 0:
logger.error(
"No data found. Please verify arguments (train_data_dir must be the parent of folders with images) / 画像がありません。引数指定を確認してください(train_data_dirには画像があるフォルダではなく、画像があるフォルダの親フォルダを指定する必要があります)"
)
return
if cache_latents:
assert (
train_dataset_group.is_latent_cacheable()
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
else:
logger.warning(
"WARNING: random_crop is not supported yet for ControlNet training / ControlNetの学習ではrandom_cropはまだサポートされていません"
)
if args.cache_text_encoder_outputs:
assert (
train_dataset_group.is_text_encoder_output_cacheable()
), "when caching Text Encoder output, either caption_dropout_rate, shuffle_caption, token_warmup_step or caption_tag_dropout_rate cannot be used / Text Encoderの出力をキャッシュするときはcaption_dropout_rate, shuffle_caption, token_warmup_step, caption_tag_dropout_rateは使えません"
# acceleratorを準備する
logger.info("prepare accelerator")
accelerator = train_util.prepare_accelerator(args)
is_main_process = accelerator.is_main_process
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype, save_dtype = train_util.prepare_dtype(args)
vae_dtype = torch.float32 if args.no_half_vae else weight_dtype
# モデルを読み込む
(
load_stable_diffusion_format,
text_encoder1,
text_encoder2,
vae,
unet,
logit_scale,
ckpt_info,
) = sdxl_train_util.load_target_model(args, accelerator, sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, weight_dtype)
# モデルに xformers とか memory efficient attention を組み込む
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa)
# 学習を準備する
if cache_latents:
vae.to(accelerator.device, dtype=vae_dtype)
vae.requires_grad_(False)
vae.eval()
with torch.no_grad():
train_dataset_group.cache_latents(
vae,
args.vae_batch_size,
args.cache_latents_to_disk,
accelerator.is_main_process,
)
vae.to("cpu")
clean_memory_on_device(accelerator.device)
accelerator.wait_for_everyone()
# TextEncoderの出力をキャッシュする
if args.cache_text_encoder_outputs:
# Text Encodes are eval and no grad
with torch.no_grad():
train_dataset_group.cache_text_encoder_outputs(
(tokenizer1, tokenizer2),
(text_encoder1, text_encoder2),
accelerator.device,
None,
args.cache_text_encoder_outputs_to_disk,
accelerator.is_main_process,
)
accelerator.wait_for_everyone()
# prepare ControlNet
network = control_net_lllite.ControlNetLLLite(unet, args.cond_emb_dim, args.network_dim, args.network_dropout)
network.apply_to()
if args.network_weights is not None:
info = network.load_weights(args.network_weights)
accelerator.print(f"load ControlNet weights from {args.network_weights}: {info}")
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
network.enable_gradient_checkpointing() # may have no effect
# 学習に必要なクラスを準備する
accelerator.print("prepare optimizer, data loader etc.")
trainable_params = list(network.prepare_optimizer_params())
logger.info(f"trainable params count: {len(trainable_params)}")
logger.info(f"number of trainable parameters: {sum(p.numel() for p in trainable_params if p.requires_grad)}")
_, _, optimizer = train_util.get_optimizer(args, trainable_params)
# dataloaderを準備する
# DataLoaderのプロセス数:0 は persistent_workers が使えないので注意
n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers
train_dataloader = torch.utils.data.DataLoader(
train_dataset_group,
batch_size=1,
shuffle=True,
collate_fn=collator,
num_workers=n_workers,
persistent_workers=args.persistent_data_loader_workers,
)
# 学習ステップ数を計算する
if args.max_train_epochs is not None:
args.max_train_steps = args.max_train_epochs * math.ceil(
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
)
accelerator.print(
f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}"
)
# データセット側にも学習ステップを送信
train_dataset_group.set_max_train_steps(args.max_train_steps)
# lr schedulerを用意する
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
# 実験的機能:勾配も含めたfp16/bf16学習を行う モデル全体をfp16/bf16にする
if args.full_fp16:
assert (
args.mixed_precision == "fp16"
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
accelerator.print("enable full fp16 training.")
unet.to(weight_dtype)
network.to(weight_dtype)
elif args.full_bf16:
assert (
args.mixed_precision == "bf16"
), "full_bf16 requires mixed precision='bf16' / full_bf16を使う場合はmixed_precision='bf16'を指定してください。"
accelerator.print("enable full bf16 training.")
unet.to(weight_dtype)
network.to(weight_dtype)
# acceleratorがなんかよろしくやってくれるらしい
unet, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, network, optimizer, train_dataloader, lr_scheduler
)
network: control_net_lllite.ControlNetLLLite
if args.gradient_checkpointing:
unet.train() # according to TI example in Diffusers, train is required -> これオリジナルのU-Netしたので本当は外せる
else:
unet.eval()
network.prepare_grad_etc()
# TextEncoderの出力をキャッシュするときにはCPUへ移動する
if args.cache_text_encoder_outputs:
# move Text Encoders for sampling images. Text Encoder doesn't work on CPU with fp16
text_encoder1.to("cpu", dtype=torch.float32)
text_encoder2.to("cpu", dtype=torch.float32)
clean_memory_on_device(accelerator.device)
else:
# make sure Text Encoders are on GPU
text_encoder1.to(accelerator.device)
text_encoder2.to(accelerator.device)
if not cache_latents:
vae.requires_grad_(False)
vae.eval()
vae.to(accelerator.device, dtype=vae_dtype)
# 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
if args.full_fp16:
train_util.patch_accelerator_for_fp16_training(accelerator)
# resumeする
train_util.resume_from_local_or_hf_if_specified(accelerator, args)
# epoch数を計算する
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
# 学習する
# TODO: find a way to handle total batch size when there are multiple datasets
accelerator.print("running training / 学習開始")
accelerator.print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}")
accelerator.print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}")
accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
accelerator.print(f" num epochs / epoch数: {num_train_epochs}")
accelerator.print(
f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}"
)
# logger.info(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
global_step = 0
noise_scheduler = DDPMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
)
prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device)
if args.zero_terminal_snr:
custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler)
if accelerator.is_main_process:
init_kwargs = {}
if args.log_tracker_config is not None:
init_kwargs = toml.load(args.log_tracker_config)
accelerator.init_trackers(
"lllite_control_net_train" if args.log_tracker_name is None else args.log_tracker_name, init_kwargs=init_kwargs
)
loss_recorder = train_util.LossRecorder()
del train_dataset_group
# function for saving/removing
def save_model(ckpt_name, unwrapped_nw, steps, epoch_no, force_sync_upload=False):
os.makedirs(args.output_dir, exist_ok=True)
ckpt_file = os.path.join(args.output_dir, ckpt_name)
accelerator.print(f"\nsaving checkpoint: {ckpt_file}")
sai_metadata = train_util.get_sai_model_spec(None, args, True, True, False)
sai_metadata["modelspec.architecture"] = sai_model_spec.ARCH_SD_XL_V1_BASE + "/control-net-lllite"
unwrapped_nw.save_weights(ckpt_file, save_dtype, sai_metadata)
if args.huggingface_repo_id is not None:
huggingface_util.upload(args, ckpt_file, "/" + ckpt_name, force_sync_upload=force_sync_upload)
def remove_model(old_ckpt_name):
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
if os.path.exists(old_ckpt_file):
accelerator.print(f"removing old checkpoint: {old_ckpt_file}")
os.remove(old_ckpt_file)
# training loop
for epoch in range(num_train_epochs):
accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}")
current_epoch.value = epoch + 1
network.on_epoch_start() # train()
for step, batch in enumerate(train_dataloader):
current_step.value = global_step
with accelerator.accumulate(network):
with torch.no_grad():
if "latents" in batch and batch["latents"] is not None:
latents = batch["latents"].to(accelerator.device).to(dtype=weight_dtype)
else:
# latentに変換
latents = vae.encode(batch["images"].to(dtype=vae_dtype)).latent_dist.sample().to(dtype=weight_dtype)
# NaNが含まれていれば警告を表示し0に置き換える
if torch.any(torch.isnan(latents)):
accelerator.print("NaN found in latents, replacing with zeros")
latents = torch.nan_to_num(latents, 0, out=latents)
latents = latents * sdxl_model_util.VAE_SCALE_FACTOR
if "text_encoder_outputs1_list" not in batch or batch["text_encoder_outputs1_list"] is None:
input_ids1 = batch["input_ids"]
input_ids2 = batch["input_ids2"]
with torch.no_grad():
# Get the text embedding for conditioning
input_ids1 = input_ids1.to(accelerator.device)
input_ids2 = input_ids2.to(accelerator.device)
encoder_hidden_states1, encoder_hidden_states2, pool2 = train_util.get_hidden_states_sdxl(
args.max_token_length,
input_ids1,
input_ids2,
tokenizer1,
tokenizer2,
text_encoder1,
text_encoder2,
None if not args.full_fp16 else weight_dtype,
)
else:
encoder_hidden_states1 = batch["text_encoder_outputs1_list"].to(accelerator.device).to(weight_dtype)
encoder_hidden_states2 = batch["text_encoder_outputs2_list"].to(accelerator.device).to(weight_dtype)
pool2 = batch["text_encoder_pool2_list"].to(accelerator.device).to(weight_dtype)
# get size embeddings
orig_size = batch["original_sizes_hw"]
crop_size = batch["crop_top_lefts"]
target_size = batch["target_sizes_hw"]
embs = sdxl_train_util.get_size_embeddings(orig_size, crop_size, target_size, accelerator.device).to(weight_dtype)
# concat embeddings
vector_embedding = torch.cat([pool2, embs], dim=1).to(weight_dtype)
text_embedding = torch.cat([encoder_hidden_states1, encoder_hidden_states2], dim=2).to(weight_dtype)
# Sample noise, sample a random timestep for each image, and add noise to the latents,
# with noise offset and/or multires noise if specified
noise, noisy_latents, timesteps, huber_c = train_util.get_noise_noisy_latents_and_timesteps(args, noise_scheduler, latents)
noisy_latents = noisy_latents.to(weight_dtype) # TODO check why noisy_latents is not weight_dtype
controlnet_image = batch["conditioning_images"].to(dtype=weight_dtype)
with accelerator.autocast():
# conditioning imageをControlNetに渡す / pass conditioning image to ControlNet
# 内部でcond_embに変換される / it will be converted to cond_emb inside
network.set_cond_image(controlnet_image)
# それらの値を使いつつ、U-Netでノイズを予測する / predict noise with U-Net using those values
noise_pred = unet(noisy_latents, timesteps, text_embedding, vector_embedding)
if args.v_parameterization:
# v-parameterization training
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
target = noise
loss = train_util.conditional_loss(noise_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c)
loss = loss.mean([1, 2, 3])
loss_weights = batch["loss_weights"] # 各sampleごとのweight
loss = loss * loss_weights
if args.min_snr_gamma:
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma, args.v_parameterization)
if args.scale_v_pred_loss_like_noise_pred:
loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler)
if args.v_pred_like_loss:
loss = add_v_prediction_like_loss(loss, timesteps, noise_scheduler, args.v_pred_like_loss)
if args.debiased_estimation_loss:
loss = apply_debiased_estimation(loss, timesteps, noise_scheduler)
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
accelerator.backward(loss)
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
params_to_clip = network.get_trainable_params()
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
# sdxl_train_util.sample_images(accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet)
# 指定ステップごとにモデルを保存
if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0:
accelerator.wait_for_everyone()
if accelerator.is_main_process:
ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, global_step)
save_model(ckpt_name, accelerator.unwrap_model(network), global_step, epoch)
if args.save_state:
train_util.save_and_remove_state_stepwise(args, accelerator, global_step)
remove_step_no = train_util.get_remove_step_no(args, global_step)
if remove_step_no is not None:
remove_ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, remove_step_no)
remove_model(remove_ckpt_name)
current_loss = loss.detach().item()
loss_recorder.add(epoch=epoch, step=step, loss=current_loss)
avr_loss: float = loss_recorder.moving_average
logs = {"avr_loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if args.logging_dir is not None:
logs = generate_step_logs(args, current_loss, avr_loss, lr_scheduler)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
if args.logging_dir is not None:
logs = {"loss/epoch": loss_recorder.moving_average}
accelerator.log(logs, step=epoch + 1)
accelerator.wait_for_everyone()
# 指定エポックごとにモデルを保存
if args.save_every_n_epochs is not None:
saving = (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs
if is_main_process and saving:
ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, epoch + 1)
save_model(ckpt_name, accelerator.unwrap_model(network), global_step, epoch + 1)
remove_epoch_no = train_util.get_remove_epoch_no(args, epoch + 1)
if remove_epoch_no is not None:
remove_ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, remove_epoch_no)
remove_model(remove_ckpt_name)
if args.save_state:
train_util.save_and_remove_state_on_epoch_end(args, accelerator, epoch + 1)
# self.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet)
# end of epoch
if is_main_process:
network = accelerator.unwrap_model(network)
accelerator.end_training()
if is_main_process and args.save_state:
train_util.save_state_on_train_end(args, accelerator)
if is_main_process:
ckpt_name = train_util.get_last_ckpt_name(args, "." + args.save_model_as)
save_model(ckpt_name, network, global_step, num_train_epochs, force_sync_upload=True)
logger.info("model saved.")
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
add_logging_arguments(parser)
train_util.add_sd_models_arguments(parser)
train_util.add_dataset_arguments(parser, False, True, True)
train_util.add_training_arguments(parser, False)
deepspeed_utils.add_deepspeed_arguments(parser)
train_util.add_optimizer_arguments(parser)
config_util.add_config_arguments(parser)
custom_train_functions.add_custom_train_arguments(parser)
sdxl_train_util.add_sdxl_training_arguments(parser)
parser.add_argument(
"--save_model_as",
type=str,
default="safetensors",
choices=[None, "ckpt", "pt", "safetensors"],
help="format to save the model (default is .safetensors) / モデル保存時の形式(デフォルトはsafetensors)",
)
parser.add_argument(
"--cond_emb_dim", type=int, default=None, help="conditioning embedding dimension / 条件付け埋め込みの次元数"
)
parser.add_argument(
"--network_weights", type=str, default=None, help="pretrained weights for network / 学習するネットワークの初期重み"
)
parser.add_argument("--network_dim", type=int, default=None, help="network dimensions (rank) / モジュールの次元数")
parser.add_argument(
"--network_dropout",
type=float,
default=None,
help="Drops neurons out of training every step (0 or None is default behavior (no dropout), 1 would drop all neurons) / 訓練時に毎ステップでニューロンをdropする(0またはNoneはdropoutなし、1は全ニューロンをdropout)",
)
parser.add_argument(
"--conditioning_data_dir",
type=str,
default=None,
help="conditioning data directory / 条件付けデータのディレクトリ",
)
parser.add_argument(
"--no_half_vae",
action="store_true",
help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う",
)
return parser
if __name__ == "__main__":
# sdxl_original_unet.USE_REENTRANT = False
parser = setup_parser()
args = parser.parse_args()
train_util.verify_command_line_training_args(args)
args = train_util.read_config_from_file(args, parser)
train(args)
|