ACCC1380's picture
Upload lora-scripts/sd-scripts/library/utils.py with huggingface_hub
008ad02 verified
raw
history blame
10.5 kB
import logging
import sys
import threading
import torch
from torchvision import transforms
from typing import *
from diffusers import EulerAncestralDiscreteScheduler
import diffusers.schedulers.scheduling_euler_ancestral_discrete
from diffusers.schedulers.scheduling_euler_ancestral_discrete import EulerAncestralDiscreteSchedulerOutput
def fire_in_thread(f, *args, **kwargs):
threading.Thread(target=f, args=args, kwargs=kwargs).start()
def add_logging_arguments(parser):
parser.add_argument(
"--console_log_level",
type=str,
default=None,
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
help="Set the logging level, default is INFO / ログレベルを設定する。デフォルトはINFO",
)
parser.add_argument(
"--console_log_file",
type=str,
default=None,
help="Log to a file instead of stderr / 標準エラー出力ではなくファイルにログを出力する",
)
parser.add_argument("--console_log_simple", action="store_true", help="Simple log output / シンプルなログ出力")
def setup_logging(args=None, log_level=None, reset=False):
if logging.root.handlers:
if reset:
# remove all handlers
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
else:
return
# log_level can be set by the caller or by the args, the caller has priority. If not set, use INFO
if log_level is None and args is not None:
log_level = args.console_log_level
if log_level is None:
log_level = "INFO"
log_level = getattr(logging, log_level)
msg_init = None
if args is not None and args.console_log_file:
handler = logging.FileHandler(args.console_log_file, mode="w")
else:
handler = None
if not args or not args.console_log_simple:
try:
from rich.logging import RichHandler
from rich.console import Console
from rich.logging import RichHandler
handler = RichHandler(console=Console(stderr=True))
except ImportError:
# print("rich is not installed, using basic logging")
msg_init = "rich is not installed, using basic logging"
if handler is None:
handler = logging.StreamHandler(sys.stdout) # same as print
handler.propagate = False
formatter = logging.Formatter(
fmt="%(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
handler.setFormatter(formatter)
logging.root.setLevel(log_level)
logging.root.addHandler(handler)
if msg_init is not None:
logger = logging.getLogger(__name__)
logger.info(msg_init)
# TODO make inf_utils.py
# region Gradual Latent hires fix
class GradualLatent:
def __init__(
self,
ratio,
start_timesteps,
every_n_steps,
ratio_step,
s_noise=1.0,
gaussian_blur_ksize=None,
gaussian_blur_sigma=0.5,
gaussian_blur_strength=0.5,
unsharp_target_x=True,
):
self.ratio = ratio
self.start_timesteps = start_timesteps
self.every_n_steps = every_n_steps
self.ratio_step = ratio_step
self.s_noise = s_noise
self.gaussian_blur_ksize = gaussian_blur_ksize
self.gaussian_blur_sigma = gaussian_blur_sigma
self.gaussian_blur_strength = gaussian_blur_strength
self.unsharp_target_x = unsharp_target_x
def __str__(self) -> str:
return (
f"GradualLatent(ratio={self.ratio}, start_timesteps={self.start_timesteps}, "
+ f"every_n_steps={self.every_n_steps}, ratio_step={self.ratio_step}, s_noise={self.s_noise}, "
+ f"gaussian_blur_ksize={self.gaussian_blur_ksize}, gaussian_blur_sigma={self.gaussian_blur_sigma}, gaussian_blur_strength={self.gaussian_blur_strength}, "
+ f"unsharp_target_x={self.unsharp_target_x})"
)
def apply_unshark_mask(self, x: torch.Tensor):
if self.gaussian_blur_ksize is None:
return x
blurred = transforms.functional.gaussian_blur(x, self.gaussian_blur_ksize, self.gaussian_blur_sigma)
# mask = torch.sigmoid((x - blurred) * self.gaussian_blur_strength)
mask = (x - blurred) * self.gaussian_blur_strength
sharpened = x + mask
return sharpened
def interpolate(self, x: torch.Tensor, resized_size, unsharp=True):
org_dtype = x.dtype
if org_dtype == torch.bfloat16:
x = x.float()
x = torch.nn.functional.interpolate(x, size=resized_size, mode="bicubic", align_corners=False).to(dtype=org_dtype)
# apply unsharp mask / アンシャープマスクを適用する
if unsharp and self.gaussian_blur_ksize:
x = self.apply_unshark_mask(x)
return x
class EulerAncestralDiscreteSchedulerGL(EulerAncestralDiscreteScheduler):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.resized_size = None
self.gradual_latent = None
def set_gradual_latent_params(self, size, gradual_latent: GradualLatent):
self.resized_size = size
self.gradual_latent = gradual_latent
def step(
self,
model_output: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
sample: torch.FloatTensor,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`):
Whether or not to return a
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple.
Returns:
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
If return_dict is `True`,
[`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned,
otherwise a tuple is returned where the first element is the sample tensor.
"""
if isinstance(timestep, int) or isinstance(timestep, torch.IntTensor) or isinstance(timestep, torch.LongTensor):
raise ValueError(
(
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep."
),
)
if not self.is_scale_input_called:
# logger.warning(
print(
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
"See `StableDiffusionPipeline` for a usage example."
)
if self.step_index is None:
self._init_step_index(timestep)
sigma = self.sigmas[self.step_index]
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
pred_original_sample = sample - sigma * model_output
elif self.config.prediction_type == "v_prediction":
# * c_out + input * c_skip
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
elif self.config.prediction_type == "sample":
raise NotImplementedError("prediction_type not implemented yet: sample")
else:
raise ValueError(f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`")
sigma_from = self.sigmas[self.step_index]
sigma_to = self.sigmas[self.step_index + 1]
sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
# 2. Convert to an ODE derivative
derivative = (sample - pred_original_sample) / sigma
dt = sigma_down - sigma
device = model_output.device
if self.resized_size is None:
prev_sample = sample + derivative * dt
noise = diffusers.schedulers.scheduling_euler_ancestral_discrete.randn_tensor(
model_output.shape, dtype=model_output.dtype, device=device, generator=generator
)
s_noise = 1.0
else:
print("resized_size", self.resized_size, "model_output.shape", model_output.shape, "sample.shape", sample.shape)
s_noise = self.gradual_latent.s_noise
if self.gradual_latent.unsharp_target_x:
prev_sample = sample + derivative * dt
prev_sample = self.gradual_latent.interpolate(prev_sample, self.resized_size)
else:
sample = self.gradual_latent.interpolate(sample, self.resized_size)
derivative = self.gradual_latent.interpolate(derivative, self.resized_size, unsharp=False)
prev_sample = sample + derivative * dt
noise = diffusers.schedulers.scheduling_euler_ancestral_discrete.randn_tensor(
(model_output.shape[0], model_output.shape[1], self.resized_size[0], self.resized_size[1]),
dtype=model_output.dtype,
device=device,
generator=generator,
)
prev_sample = prev_sample + noise * sigma_up * s_noise
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (prev_sample,)
return EulerAncestralDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
# endregion