|
import math |
|
from typing import Any |
|
from einops import rearrange |
|
import torch |
|
from diffusers.models.attention_processor import Attention |
|
|
|
|
|
|
|
|
|
|
|
|
|
EPSILON = 1e-6 |
|
|
|
|
|
class FlashAttentionFunction(torch.autograd.function.Function): |
|
@staticmethod |
|
@torch.no_grad() |
|
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size): |
|
"""Algorithm 2 in the paper""" |
|
|
|
device = q.device |
|
dtype = q.dtype |
|
max_neg_value = -torch.finfo(q.dtype).max |
|
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) |
|
|
|
o = torch.zeros_like(q) |
|
all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device) |
|
all_row_maxes = torch.full( |
|
(*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device |
|
) |
|
|
|
scale = q.shape[-1] ** -0.5 |
|
|
|
if mask is None: |
|
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size) |
|
else: |
|
mask = rearrange(mask, "b n -> b 1 1 n") |
|
mask = mask.split(q_bucket_size, dim=-1) |
|
|
|
row_splits = zip( |
|
q.split(q_bucket_size, dim=-2), |
|
o.split(q_bucket_size, dim=-2), |
|
mask, |
|
all_row_sums.split(q_bucket_size, dim=-2), |
|
all_row_maxes.split(q_bucket_size, dim=-2), |
|
) |
|
|
|
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits): |
|
q_start_index = ind * q_bucket_size - qk_len_diff |
|
|
|
col_splits = zip( |
|
k.split(k_bucket_size, dim=-2), |
|
v.split(k_bucket_size, dim=-2), |
|
) |
|
|
|
for k_ind, (kc, vc) in enumerate(col_splits): |
|
k_start_index = k_ind * k_bucket_size |
|
|
|
attn_weights = ( |
|
torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale |
|
) |
|
|
|
if row_mask is not None: |
|
attn_weights.masked_fill_(~row_mask, max_neg_value) |
|
|
|
if causal and q_start_index < (k_start_index + k_bucket_size - 1): |
|
causal_mask = torch.ones( |
|
(qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device |
|
).triu(q_start_index - k_start_index + 1) |
|
attn_weights.masked_fill_(causal_mask, max_neg_value) |
|
|
|
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True) |
|
attn_weights -= block_row_maxes |
|
exp_weights = torch.exp(attn_weights) |
|
|
|
if row_mask is not None: |
|
exp_weights.masked_fill_(~row_mask, 0.0) |
|
|
|
block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp( |
|
min=EPSILON |
|
) |
|
|
|
new_row_maxes = torch.maximum(block_row_maxes, row_maxes) |
|
|
|
exp_values = torch.einsum( |
|
"... i j, ... j d -> ... i d", exp_weights, vc |
|
) |
|
|
|
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes) |
|
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes) |
|
|
|
new_row_sums = ( |
|
exp_row_max_diff * row_sums |
|
+ exp_block_row_max_diff * block_row_sums |
|
) |
|
|
|
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_( |
|
(exp_block_row_max_diff / new_row_sums) * exp_values |
|
) |
|
|
|
row_maxes.copy_(new_row_maxes) |
|
row_sums.copy_(new_row_sums) |
|
|
|
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size) |
|
ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes) |
|
|
|
return o |
|
|
|
@staticmethod |
|
@torch.no_grad() |
|
def backward(ctx, do): |
|
"""Algorithm 4 in the paper""" |
|
|
|
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args |
|
q, k, v, o, l, m = ctx.saved_tensors |
|
|
|
device = q.device |
|
|
|
max_neg_value = -torch.finfo(q.dtype).max |
|
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) |
|
|
|
dq = torch.zeros_like(q) |
|
dk = torch.zeros_like(k) |
|
dv = torch.zeros_like(v) |
|
|
|
row_splits = zip( |
|
q.split(q_bucket_size, dim=-2), |
|
o.split(q_bucket_size, dim=-2), |
|
do.split(q_bucket_size, dim=-2), |
|
mask, |
|
l.split(q_bucket_size, dim=-2), |
|
m.split(q_bucket_size, dim=-2), |
|
dq.split(q_bucket_size, dim=-2), |
|
) |
|
|
|
for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits): |
|
q_start_index = ind * q_bucket_size - qk_len_diff |
|
|
|
col_splits = zip( |
|
k.split(k_bucket_size, dim=-2), |
|
v.split(k_bucket_size, dim=-2), |
|
dk.split(k_bucket_size, dim=-2), |
|
dv.split(k_bucket_size, dim=-2), |
|
) |
|
|
|
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits): |
|
k_start_index = k_ind * k_bucket_size |
|
|
|
attn_weights = ( |
|
torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale |
|
) |
|
|
|
if causal and q_start_index < (k_start_index + k_bucket_size - 1): |
|
causal_mask = torch.ones( |
|
(qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device |
|
).triu(q_start_index - k_start_index + 1) |
|
attn_weights.masked_fill_(causal_mask, max_neg_value) |
|
|
|
exp_attn_weights = torch.exp(attn_weights - mc) |
|
|
|
if row_mask is not None: |
|
exp_attn_weights.masked_fill_(~row_mask, 0.0) |
|
|
|
p = exp_attn_weights / lc |
|
|
|
dv_chunk = torch.einsum("... i j, ... i d -> ... j d", p, doc) |
|
dp = torch.einsum("... i d, ... j d -> ... i j", doc, vc) |
|
|
|
D = (doc * oc).sum(dim=-1, keepdims=True) |
|
ds = p * scale * (dp - D) |
|
|
|
dq_chunk = torch.einsum("... i j, ... j d -> ... i d", ds, kc) |
|
dk_chunk = torch.einsum("... i j, ... i d -> ... j d", ds, qc) |
|
|
|
dqc.add_(dq_chunk) |
|
dkc.add_(dk_chunk) |
|
dvc.add_(dv_chunk) |
|
|
|
return dq, dk, dv, None, None, None, None |
|
|
|
|
|
class FlashAttnProcessor: |
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
) -> Any: |
|
q_bucket_size = 512 |
|
k_bucket_size = 1024 |
|
|
|
h = attn.heads |
|
q = attn.to_q(hidden_states) |
|
|
|
encoder_hidden_states = ( |
|
encoder_hidden_states |
|
if encoder_hidden_states is not None |
|
else hidden_states |
|
) |
|
encoder_hidden_states = encoder_hidden_states.to(hidden_states.dtype) |
|
|
|
if hasattr(attn, "hypernetwork") and attn.hypernetwork is not None: |
|
context_k, context_v = attn.hypernetwork.forward( |
|
hidden_states, encoder_hidden_states |
|
) |
|
context_k = context_k.to(hidden_states.dtype) |
|
context_v = context_v.to(hidden_states.dtype) |
|
else: |
|
context_k = encoder_hidden_states |
|
context_v = encoder_hidden_states |
|
|
|
k = attn.to_k(context_k) |
|
v = attn.to_v(context_v) |
|
del encoder_hidden_states, hidden_states |
|
|
|
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v)) |
|
|
|
out = FlashAttentionFunction.apply( |
|
q, k, v, attention_mask, False, q_bucket_size, k_bucket_size |
|
) |
|
|
|
out = rearrange(out, "b h n d -> b n (h d)") |
|
|
|
out = attn.to_out[0](out) |
|
out = attn.to_out[1](out) |
|
return out |
|
|