|
import os |
|
import torch |
|
import intel_extension_for_pytorch as ipex |
|
from functools import cache |
|
|
|
|
|
|
|
|
|
|
|
sdpa_slice_trigger_rate = float(os.environ.get('IPEX_SDPA_SLICE_TRIGGER_RATE', 4)) |
|
attention_slice_rate = float(os.environ.get('IPEX_ATTENTION_SLICE_RATE', 4)) |
|
|
|
|
|
@cache |
|
def find_slice_size(slice_size, slice_block_size): |
|
while (slice_size * slice_block_size) > attention_slice_rate: |
|
slice_size = slice_size // 2 |
|
if slice_size <= 1: |
|
slice_size = 1 |
|
break |
|
return slice_size |
|
|
|
|
|
@cache |
|
def find_sdpa_slice_sizes(query_shape, query_element_size): |
|
if len(query_shape) == 3: |
|
batch_size_attention, query_tokens, shape_three = query_shape |
|
shape_four = 1 |
|
else: |
|
batch_size_attention, query_tokens, shape_three, shape_four = query_shape |
|
|
|
slice_block_size = query_tokens * shape_three * shape_four / 1024 / 1024 * query_element_size |
|
block_size = batch_size_attention * slice_block_size |
|
|
|
split_slice_size = batch_size_attention |
|
split_2_slice_size = query_tokens |
|
split_3_slice_size = shape_three |
|
|
|
do_split = False |
|
do_split_2 = False |
|
do_split_3 = False |
|
|
|
if block_size > sdpa_slice_trigger_rate: |
|
do_split = True |
|
split_slice_size = find_slice_size(split_slice_size, slice_block_size) |
|
if split_slice_size * slice_block_size > attention_slice_rate: |
|
slice_2_block_size = split_slice_size * shape_three * shape_four / 1024 / 1024 * query_element_size |
|
do_split_2 = True |
|
split_2_slice_size = find_slice_size(split_2_slice_size, slice_2_block_size) |
|
if split_2_slice_size * slice_2_block_size > attention_slice_rate: |
|
slice_3_block_size = split_slice_size * split_2_slice_size * shape_four / 1024 / 1024 * query_element_size |
|
do_split_3 = True |
|
split_3_slice_size = find_slice_size(split_3_slice_size, slice_3_block_size) |
|
|
|
return do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size |
|
|
|
|
|
@cache |
|
def find_bmm_slice_sizes(input_shape, input_element_size, mat2_shape): |
|
batch_size_attention, input_tokens, mat2_atten_shape = input_shape[0], input_shape[1], mat2_shape[2] |
|
slice_block_size = input_tokens * mat2_atten_shape / 1024 / 1024 * input_element_size |
|
block_size = batch_size_attention * slice_block_size |
|
|
|
split_slice_size = batch_size_attention |
|
split_2_slice_size = input_tokens |
|
split_3_slice_size = mat2_atten_shape |
|
|
|
do_split = False |
|
do_split_2 = False |
|
do_split_3 = False |
|
|
|
if block_size > attention_slice_rate: |
|
do_split = True |
|
split_slice_size = find_slice_size(split_slice_size, slice_block_size) |
|
if split_slice_size * slice_block_size > attention_slice_rate: |
|
slice_2_block_size = split_slice_size * mat2_atten_shape / 1024 / 1024 * input_element_size |
|
do_split_2 = True |
|
split_2_slice_size = find_slice_size(split_2_slice_size, slice_2_block_size) |
|
if split_2_slice_size * slice_2_block_size > attention_slice_rate: |
|
slice_3_block_size = split_slice_size * split_2_slice_size / 1024 / 1024 * input_element_size |
|
do_split_3 = True |
|
split_3_slice_size = find_slice_size(split_3_slice_size, slice_3_block_size) |
|
|
|
return do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size |
|
|
|
|
|
original_torch_bmm = torch.bmm |
|
def torch_bmm_32_bit(input, mat2, *, out=None): |
|
if input.device.type != "xpu": |
|
return original_torch_bmm(input, mat2, out=out) |
|
do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size = find_bmm_slice_sizes(input.shape, input.element_size(), mat2.shape) |
|
|
|
|
|
if do_split: |
|
batch_size_attention, input_tokens, mat2_atten_shape = input.shape[0], input.shape[1], mat2.shape[2] |
|
hidden_states = torch.zeros(input.shape[0], input.shape[1], mat2.shape[2], device=input.device, dtype=input.dtype) |
|
for i in range(batch_size_attention // split_slice_size): |
|
start_idx = i * split_slice_size |
|
end_idx = (i + 1) * split_slice_size |
|
if do_split_2: |
|
for i2 in range(input_tokens // split_2_slice_size): |
|
start_idx_2 = i2 * split_2_slice_size |
|
end_idx_2 = (i2 + 1) * split_2_slice_size |
|
if do_split_3: |
|
for i3 in range(mat2_atten_shape // split_3_slice_size): |
|
start_idx_3 = i3 * split_3_slice_size |
|
end_idx_3 = (i3 + 1) * split_3_slice_size |
|
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] = original_torch_bmm( |
|
input[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3], |
|
mat2[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3], |
|
out=out |
|
) |
|
else: |
|
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = original_torch_bmm( |
|
input[start_idx:end_idx, start_idx_2:end_idx_2], |
|
mat2[start_idx:end_idx, start_idx_2:end_idx_2], |
|
out=out |
|
) |
|
else: |
|
hidden_states[start_idx:end_idx] = original_torch_bmm( |
|
input[start_idx:end_idx], |
|
mat2[start_idx:end_idx], |
|
out=out |
|
) |
|
torch.xpu.synchronize(input.device) |
|
else: |
|
return original_torch_bmm(input, mat2, out=out) |
|
return hidden_states |
|
|
|
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention |
|
def scaled_dot_product_attention_32_bit(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, **kwargs): |
|
if query.device.type != "xpu": |
|
return original_scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal, **kwargs) |
|
do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size = find_sdpa_slice_sizes(query.shape, query.element_size()) |
|
|
|
|
|
if do_split: |
|
batch_size_attention, query_tokens, shape_three = query.shape[0], query.shape[1], query.shape[2] |
|
hidden_states = torch.zeros(query.shape, device=query.device, dtype=query.dtype) |
|
for i in range(batch_size_attention // split_slice_size): |
|
start_idx = i * split_slice_size |
|
end_idx = (i + 1) * split_slice_size |
|
if do_split_2: |
|
for i2 in range(query_tokens // split_2_slice_size): |
|
start_idx_2 = i2 * split_2_slice_size |
|
end_idx_2 = (i2 + 1) * split_2_slice_size |
|
if do_split_3: |
|
for i3 in range(shape_three // split_3_slice_size): |
|
start_idx_3 = i3 * split_3_slice_size |
|
end_idx_3 = (i3 + 1) * split_3_slice_size |
|
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] = original_scaled_dot_product_attention( |
|
query[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3], |
|
key[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3], |
|
value[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3], |
|
attn_mask=attn_mask[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] if attn_mask is not None else attn_mask, |
|
dropout_p=dropout_p, is_causal=is_causal, **kwargs |
|
) |
|
else: |
|
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = original_scaled_dot_product_attention( |
|
query[start_idx:end_idx, start_idx_2:end_idx_2], |
|
key[start_idx:end_idx, start_idx_2:end_idx_2], |
|
value[start_idx:end_idx, start_idx_2:end_idx_2], |
|
attn_mask=attn_mask[start_idx:end_idx, start_idx_2:end_idx_2] if attn_mask is not None else attn_mask, |
|
dropout_p=dropout_p, is_causal=is_causal, **kwargs |
|
) |
|
else: |
|
hidden_states[start_idx:end_idx] = original_scaled_dot_product_attention( |
|
query[start_idx:end_idx], |
|
key[start_idx:end_idx], |
|
value[start_idx:end_idx], |
|
attn_mask=attn_mask[start_idx:end_idx] if attn_mask is not None else attn_mask, |
|
dropout_p=dropout_p, is_causal=is_causal, **kwargs |
|
) |
|
torch.xpu.synchronize(query.device) |
|
else: |
|
return original_scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal, **kwargs) |
|
return hidden_states |
|
|