|
|
|
|
|
|
|
import math |
|
import os |
|
|
|
import torch |
|
from library.device_utils import init_ipex |
|
init_ipex() |
|
|
|
import diffusers |
|
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextConfig, logging |
|
from diffusers import AutoencoderKL, DDIMScheduler, StableDiffusionPipeline |
|
from safetensors.torch import load_file, save_file |
|
from library.original_unet import UNet2DConditionModel |
|
from library.utils import setup_logging |
|
setup_logging() |
|
import logging |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
NUM_TRAIN_TIMESTEPS = 1000 |
|
BETA_START = 0.00085 |
|
BETA_END = 0.0120 |
|
|
|
UNET_PARAMS_MODEL_CHANNELS = 320 |
|
UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4] |
|
UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1] |
|
UNET_PARAMS_IMAGE_SIZE = 64 |
|
UNET_PARAMS_IN_CHANNELS = 4 |
|
UNET_PARAMS_OUT_CHANNELS = 4 |
|
UNET_PARAMS_NUM_RES_BLOCKS = 2 |
|
UNET_PARAMS_CONTEXT_DIM = 768 |
|
UNET_PARAMS_NUM_HEADS = 8 |
|
|
|
|
|
VAE_PARAMS_Z_CHANNELS = 4 |
|
VAE_PARAMS_RESOLUTION = 256 |
|
VAE_PARAMS_IN_CHANNELS = 3 |
|
VAE_PARAMS_OUT_CH = 3 |
|
VAE_PARAMS_CH = 128 |
|
VAE_PARAMS_CH_MULT = [1, 2, 4, 4] |
|
VAE_PARAMS_NUM_RES_BLOCKS = 2 |
|
|
|
|
|
V2_UNET_PARAMS_ATTENTION_HEAD_DIM = [5, 10, 20, 20] |
|
V2_UNET_PARAMS_CONTEXT_DIM = 1024 |
|
|
|
|
|
|
|
DIFFUSERS_REF_MODEL_ID_V1 = "runwayml/stable-diffusion-v1-5" |
|
DIFFUSERS_REF_MODEL_ID_V2 = "stabilityai/stable-diffusion-2-1" |
|
|
|
|
|
|
|
|
|
|
|
|
|
def shave_segments(path, n_shave_prefix_segments=1): |
|
""" |
|
Removes segments. Positive values shave the first segments, negative shave the last segments. |
|
""" |
|
if n_shave_prefix_segments >= 0: |
|
return ".".join(path.split(".")[n_shave_prefix_segments:]) |
|
else: |
|
return ".".join(path.split(".")[:n_shave_prefix_segments]) |
|
|
|
|
|
def renew_resnet_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside resnets to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item.replace("in_layers.0", "norm1") |
|
new_item = new_item.replace("in_layers.2", "conv1") |
|
|
|
new_item = new_item.replace("out_layers.0", "norm2") |
|
new_item = new_item.replace("out_layers.3", "conv2") |
|
|
|
new_item = new_item.replace("emb_layers.1", "time_emb_proj") |
|
new_item = new_item.replace("skip_connection", "conv_shortcut") |
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside resnets to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
new_item = new_item.replace("nin_shortcut", "conv_shortcut") |
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def renew_attention_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside attentions to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside attentions to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
new_item = new_item.replace("norm.weight", "group_norm.weight") |
|
new_item = new_item.replace("norm.bias", "group_norm.bias") |
|
|
|
if diffusers.__version__ < "0.17.0": |
|
new_item = new_item.replace("q.weight", "query.weight") |
|
new_item = new_item.replace("q.bias", "query.bias") |
|
|
|
new_item = new_item.replace("k.weight", "key.weight") |
|
new_item = new_item.replace("k.bias", "key.bias") |
|
|
|
new_item = new_item.replace("v.weight", "value.weight") |
|
new_item = new_item.replace("v.bias", "value.bias") |
|
|
|
new_item = new_item.replace("proj_out.weight", "proj_attn.weight") |
|
new_item = new_item.replace("proj_out.bias", "proj_attn.bias") |
|
else: |
|
new_item = new_item.replace("q.weight", "to_q.weight") |
|
new_item = new_item.replace("q.bias", "to_q.bias") |
|
|
|
new_item = new_item.replace("k.weight", "to_k.weight") |
|
new_item = new_item.replace("k.bias", "to_k.bias") |
|
|
|
new_item = new_item.replace("v.weight", "to_v.weight") |
|
new_item = new_item.replace("v.bias", "to_v.bias") |
|
|
|
new_item = new_item.replace("proj_out.weight", "to_out.0.weight") |
|
new_item = new_item.replace("proj_out.bias", "to_out.0.bias") |
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def assign_to_checkpoint( |
|
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None |
|
): |
|
""" |
|
This does the final conversion step: take locally converted weights and apply a global renaming |
|
to them. It splits attention layers, and takes into account additional replacements |
|
that may arise. |
|
|
|
Assigns the weights to the new checkpoint. |
|
""" |
|
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." |
|
|
|
|
|
if attention_paths_to_split is not None: |
|
for path, path_map in attention_paths_to_split.items(): |
|
old_tensor = old_checkpoint[path] |
|
channels = old_tensor.shape[0] // 3 |
|
|
|
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) |
|
|
|
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 |
|
|
|
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) |
|
query, key, value = old_tensor.split(channels // num_heads, dim=1) |
|
|
|
checkpoint[path_map["query"]] = query.reshape(target_shape) |
|
checkpoint[path_map["key"]] = key.reshape(target_shape) |
|
checkpoint[path_map["value"]] = value.reshape(target_shape) |
|
|
|
for path in paths: |
|
new_path = path["new"] |
|
|
|
|
|
if attention_paths_to_split is not None and new_path in attention_paths_to_split: |
|
continue |
|
|
|
|
|
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") |
|
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") |
|
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") |
|
|
|
if additional_replacements is not None: |
|
for replacement in additional_replacements: |
|
new_path = new_path.replace(replacement["old"], replacement["new"]) |
|
|
|
|
|
reshaping = False |
|
if diffusers.__version__ < "0.17.0": |
|
if "proj_attn.weight" in new_path: |
|
reshaping = True |
|
else: |
|
if ".attentions." in new_path and ".0.to_" in new_path and old_checkpoint[path["old"]].ndim > 2: |
|
reshaping = True |
|
|
|
if reshaping: |
|
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0] |
|
else: |
|
checkpoint[new_path] = old_checkpoint[path["old"]] |
|
|
|
|
|
def conv_attn_to_linear(checkpoint): |
|
keys = list(checkpoint.keys()) |
|
attn_keys = ["query.weight", "key.weight", "value.weight"] |
|
for key in keys: |
|
if ".".join(key.split(".")[-2:]) in attn_keys: |
|
if checkpoint[key].ndim > 2: |
|
checkpoint[key] = checkpoint[key][:, :, 0, 0] |
|
elif "proj_attn.weight" in key: |
|
if checkpoint[key].ndim > 2: |
|
checkpoint[key] = checkpoint[key][:, :, 0] |
|
|
|
|
|
def linear_transformer_to_conv(checkpoint): |
|
keys = list(checkpoint.keys()) |
|
tf_keys = ["proj_in.weight", "proj_out.weight"] |
|
for key in keys: |
|
if ".".join(key.split(".")[-2:]) in tf_keys: |
|
if checkpoint[key].ndim == 2: |
|
checkpoint[key] = checkpoint[key].unsqueeze(2).unsqueeze(2) |
|
|
|
|
|
def convert_ldm_unet_checkpoint(v2, checkpoint, config): |
|
""" |
|
Takes a state dict and a config, and returns a converted checkpoint. |
|
""" |
|
|
|
|
|
unet_state_dict = {} |
|
unet_key = "model.diffusion_model." |
|
keys = list(checkpoint.keys()) |
|
for key in keys: |
|
if key.startswith(unet_key): |
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) |
|
|
|
new_checkpoint = {} |
|
|
|
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] |
|
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] |
|
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] |
|
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] |
|
|
|
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] |
|
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] |
|
|
|
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] |
|
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] |
|
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] |
|
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] |
|
|
|
|
|
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) |
|
input_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}." in key] for layer_id in range(num_input_blocks) |
|
} |
|
|
|
|
|
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) |
|
middle_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}." in key] for layer_id in range(num_middle_blocks) |
|
} |
|
|
|
|
|
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) |
|
output_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}." in key] for layer_id in range(num_output_blocks) |
|
} |
|
|
|
for i in range(1, num_input_blocks): |
|
block_id = (i - 1) // (config["layers_per_block"] + 1) |
|
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) |
|
|
|
resnets = [key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key] |
|
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] |
|
|
|
if f"input_blocks.{i}.0.op.weight" in unet_state_dict: |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( |
|
f"input_blocks.{i}.0.op.weight" |
|
) |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(f"input_blocks.{i}.0.op.bias") |
|
|
|
paths = renew_resnet_paths(resnets) |
|
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} |
|
assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
if len(attentions): |
|
paths = renew_attention_paths(attentions) |
|
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} |
|
assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
resnet_0 = middle_blocks[0] |
|
attentions = middle_blocks[1] |
|
resnet_1 = middle_blocks[2] |
|
|
|
resnet_0_paths = renew_resnet_paths(resnet_0) |
|
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) |
|
|
|
resnet_1_paths = renew_resnet_paths(resnet_1) |
|
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) |
|
|
|
attentions_paths = renew_attention_paths(attentions) |
|
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint(attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
for i in range(num_output_blocks): |
|
block_id = i // (config["layers_per_block"] + 1) |
|
layer_in_block_id = i % (config["layers_per_block"] + 1) |
|
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] |
|
output_block_list = {} |
|
|
|
for layer in output_block_layers: |
|
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) |
|
if layer_id in output_block_list: |
|
output_block_list[layer_id].append(layer_name) |
|
else: |
|
output_block_list[layer_id] = [layer_name] |
|
|
|
if len(output_block_list) > 1: |
|
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] |
|
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] |
|
|
|
resnet_0_paths = renew_resnet_paths(resnets) |
|
paths = renew_resnet_paths(resnets) |
|
|
|
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} |
|
assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
|
|
|
|
|
|
|
|
|
|
for l in output_block_list.values(): |
|
l.sort() |
|
|
|
if ["conv.bias", "conv.weight"] in output_block_list.values(): |
|
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"]) |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ |
|
f"output_blocks.{i}.{index}.conv.bias" |
|
] |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ |
|
f"output_blocks.{i}.{index}.conv.weight" |
|
] |
|
|
|
|
|
if len(attentions) == 2: |
|
attentions = [] |
|
|
|
if len(attentions): |
|
paths = renew_attention_paths(attentions) |
|
meta_path = { |
|
"old": f"output_blocks.{i}.1", |
|
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", |
|
} |
|
assign_to_checkpoint(paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config) |
|
else: |
|
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) |
|
for path in resnet_0_paths: |
|
old_path = ".".join(["output_blocks", str(i), path["old"]]) |
|
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) |
|
|
|
new_checkpoint[new_path] = unet_state_dict[old_path] |
|
|
|
|
|
|
|
if v2 and not config.get("use_linear_projection", False): |
|
linear_transformer_to_conv(new_checkpoint) |
|
|
|
return new_checkpoint |
|
|
|
|
|
def convert_ldm_vae_checkpoint(checkpoint, config): |
|
|
|
vae_state_dict = {} |
|
vae_key = "first_stage_model." |
|
keys = list(checkpoint.keys()) |
|
for key in keys: |
|
if key.startswith(vae_key): |
|
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) |
|
|
|
|
|
|
|
|
|
new_checkpoint = {} |
|
|
|
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] |
|
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] |
|
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] |
|
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] |
|
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] |
|
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] |
|
|
|
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] |
|
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] |
|
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] |
|
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] |
|
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] |
|
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] |
|
|
|
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] |
|
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] |
|
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] |
|
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] |
|
|
|
|
|
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) |
|
down_blocks = {layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)} |
|
|
|
|
|
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) |
|
up_blocks = {layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)} |
|
|
|
for i in range(num_down_blocks): |
|
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] |
|
|
|
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: |
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( |
|
f"encoder.down.{i}.downsample.conv.weight" |
|
) |
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( |
|
f"encoder.down.{i}.downsample.conv.bias" |
|
) |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] |
|
num_mid_res_blocks = 2 |
|
for i in range(1, num_mid_res_blocks + 1): |
|
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] |
|
paths = renew_vae_attention_paths(mid_attentions) |
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
conv_attn_to_linear(new_checkpoint) |
|
|
|
for i in range(num_up_blocks): |
|
block_id = num_up_blocks - 1 - i |
|
resnets = [key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key] |
|
|
|
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: |
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ |
|
f"decoder.up.{block_id}.upsample.conv.weight" |
|
] |
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ |
|
f"decoder.up.{block_id}.upsample.conv.bias" |
|
] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] |
|
num_mid_res_blocks = 2 |
|
for i in range(1, num_mid_res_blocks + 1): |
|
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] |
|
paths = renew_vae_attention_paths(mid_attentions) |
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
conv_attn_to_linear(new_checkpoint) |
|
return new_checkpoint |
|
|
|
|
|
def create_unet_diffusers_config(v2, use_linear_projection_in_v2=False): |
|
""" |
|
Creates a config for the diffusers based on the config of the LDM model. |
|
""" |
|
|
|
|
|
block_out_channels = [UNET_PARAMS_MODEL_CHANNELS * mult for mult in UNET_PARAMS_CHANNEL_MULT] |
|
|
|
down_block_types = [] |
|
resolution = 1 |
|
for i in range(len(block_out_channels)): |
|
block_type = "CrossAttnDownBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "DownBlock2D" |
|
down_block_types.append(block_type) |
|
if i != len(block_out_channels) - 1: |
|
resolution *= 2 |
|
|
|
up_block_types = [] |
|
for i in range(len(block_out_channels)): |
|
block_type = "CrossAttnUpBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "UpBlock2D" |
|
up_block_types.append(block_type) |
|
resolution //= 2 |
|
|
|
config = dict( |
|
sample_size=UNET_PARAMS_IMAGE_SIZE, |
|
in_channels=UNET_PARAMS_IN_CHANNELS, |
|
out_channels=UNET_PARAMS_OUT_CHANNELS, |
|
down_block_types=tuple(down_block_types), |
|
up_block_types=tuple(up_block_types), |
|
block_out_channels=tuple(block_out_channels), |
|
layers_per_block=UNET_PARAMS_NUM_RES_BLOCKS, |
|
cross_attention_dim=UNET_PARAMS_CONTEXT_DIM if not v2 else V2_UNET_PARAMS_CONTEXT_DIM, |
|
attention_head_dim=UNET_PARAMS_NUM_HEADS if not v2 else V2_UNET_PARAMS_ATTENTION_HEAD_DIM, |
|
|
|
) |
|
if v2 and use_linear_projection_in_v2: |
|
config["use_linear_projection"] = True |
|
|
|
return config |
|
|
|
|
|
def create_vae_diffusers_config(): |
|
""" |
|
Creates a config for the diffusers based on the config of the LDM model. |
|
""" |
|
|
|
|
|
block_out_channels = [VAE_PARAMS_CH * mult for mult in VAE_PARAMS_CH_MULT] |
|
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) |
|
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) |
|
|
|
config = dict( |
|
sample_size=VAE_PARAMS_RESOLUTION, |
|
in_channels=VAE_PARAMS_IN_CHANNELS, |
|
out_channels=VAE_PARAMS_OUT_CH, |
|
down_block_types=tuple(down_block_types), |
|
up_block_types=tuple(up_block_types), |
|
block_out_channels=tuple(block_out_channels), |
|
latent_channels=VAE_PARAMS_Z_CHANNELS, |
|
layers_per_block=VAE_PARAMS_NUM_RES_BLOCKS, |
|
) |
|
return config |
|
|
|
|
|
def convert_ldm_clip_checkpoint_v1(checkpoint): |
|
keys = list(checkpoint.keys()) |
|
text_model_dict = {} |
|
for key in keys: |
|
if key.startswith("cond_stage_model.transformer"): |
|
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key] |
|
|
|
|
|
if "text_model.embeddings.position_ids" in text_model_dict: |
|
text_model_dict.pop("text_model.embeddings.position_ids") |
|
|
|
return text_model_dict |
|
|
|
|
|
def convert_ldm_clip_checkpoint_v2(checkpoint, max_length): |
|
|
|
def convert_key(key): |
|
if not key.startswith("cond_stage_model"): |
|
return None |
|
|
|
|
|
key = key.replace("cond_stage_model.model.transformer.", "text_model.encoder.") |
|
key = key.replace("cond_stage_model.model.", "text_model.") |
|
|
|
if "resblocks" in key: |
|
|
|
key = key.replace(".resblocks.", ".layers.") |
|
if ".ln_" in key: |
|
key = key.replace(".ln_", ".layer_norm") |
|
elif ".mlp." in key: |
|
key = key.replace(".c_fc.", ".fc1.") |
|
key = key.replace(".c_proj.", ".fc2.") |
|
elif ".attn.out_proj" in key: |
|
key = key.replace(".attn.out_proj.", ".self_attn.out_proj.") |
|
elif ".attn.in_proj" in key: |
|
key = None |
|
else: |
|
raise ValueError(f"unexpected key in SD: {key}") |
|
elif ".positional_embedding" in key: |
|
key = key.replace(".positional_embedding", ".embeddings.position_embedding.weight") |
|
elif ".text_projection" in key: |
|
key = None |
|
elif ".logit_scale" in key: |
|
key = None |
|
elif ".token_embedding" in key: |
|
key = key.replace(".token_embedding.weight", ".embeddings.token_embedding.weight") |
|
elif ".ln_final" in key: |
|
key = key.replace(".ln_final", ".final_layer_norm") |
|
return key |
|
|
|
keys = list(checkpoint.keys()) |
|
new_sd = {} |
|
for key in keys: |
|
|
|
if ".resblocks.23." in key: |
|
continue |
|
new_key = convert_key(key) |
|
if new_key is None: |
|
continue |
|
new_sd[new_key] = checkpoint[key] |
|
|
|
|
|
for key in keys: |
|
if ".resblocks.23." in key: |
|
continue |
|
if ".resblocks" in key and ".attn.in_proj_" in key: |
|
|
|
values = torch.chunk(checkpoint[key], 3) |
|
|
|
key_suffix = ".weight" if "weight" in key else ".bias" |
|
key_pfx = key.replace("cond_stage_model.model.transformer.resblocks.", "text_model.encoder.layers.") |
|
key_pfx = key_pfx.replace("_weight", "") |
|
key_pfx = key_pfx.replace("_bias", "") |
|
key_pfx = key_pfx.replace(".attn.in_proj", ".self_attn.") |
|
new_sd[key_pfx + "q_proj" + key_suffix] = values[0] |
|
new_sd[key_pfx + "k_proj" + key_suffix] = values[1] |
|
new_sd[key_pfx + "v_proj" + key_suffix] = values[2] |
|
|
|
|
|
ANOTHER_POSITION_IDS_KEY = "text_model.encoder.text_model.embeddings.position_ids" |
|
if ANOTHER_POSITION_IDS_KEY in new_sd: |
|
|
|
position_ids = new_sd[ANOTHER_POSITION_IDS_KEY] |
|
del new_sd[ANOTHER_POSITION_IDS_KEY] |
|
else: |
|
position_ids = torch.Tensor([list(range(max_length))]).to(torch.int64) |
|
|
|
new_sd["text_model.embeddings.position_ids"] = position_ids |
|
return new_sd |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def conv_transformer_to_linear(checkpoint): |
|
keys = list(checkpoint.keys()) |
|
tf_keys = ["proj_in.weight", "proj_out.weight"] |
|
for key in keys: |
|
if ".".join(key.split(".")[-2:]) in tf_keys: |
|
if checkpoint[key].ndim > 2: |
|
checkpoint[key] = checkpoint[key][:, :, 0, 0] |
|
|
|
|
|
def convert_unet_state_dict_to_sd(v2, unet_state_dict): |
|
unet_conversion_map = [ |
|
|
|
("time_embed.0.weight", "time_embedding.linear_1.weight"), |
|
("time_embed.0.bias", "time_embedding.linear_1.bias"), |
|
("time_embed.2.weight", "time_embedding.linear_2.weight"), |
|
("time_embed.2.bias", "time_embedding.linear_2.bias"), |
|
("input_blocks.0.0.weight", "conv_in.weight"), |
|
("input_blocks.0.0.bias", "conv_in.bias"), |
|
("out.0.weight", "conv_norm_out.weight"), |
|
("out.0.bias", "conv_norm_out.bias"), |
|
("out.2.weight", "conv_out.weight"), |
|
("out.2.bias", "conv_out.bias"), |
|
] |
|
|
|
unet_conversion_map_resnet = [ |
|
|
|
("in_layers.0", "norm1"), |
|
("in_layers.2", "conv1"), |
|
("out_layers.0", "norm2"), |
|
("out_layers.3", "conv2"), |
|
("emb_layers.1", "time_emb_proj"), |
|
("skip_connection", "conv_shortcut"), |
|
] |
|
|
|
unet_conversion_map_layer = [] |
|
for i in range(4): |
|
|
|
|
|
for j in range(2): |
|
|
|
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." |
|
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." |
|
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) |
|
|
|
if i < 3: |
|
|
|
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." |
|
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1." |
|
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) |
|
|
|
for j in range(3): |
|
|
|
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." |
|
sd_up_res_prefix = f"output_blocks.{3*i + j}.0." |
|
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) |
|
|
|
if i > 0: |
|
|
|
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." |
|
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1." |
|
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) |
|
|
|
if i < 3: |
|
|
|
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." |
|
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op." |
|
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) |
|
|
|
|
|
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." |
|
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." |
|
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) |
|
|
|
hf_mid_atn_prefix = "mid_block.attentions.0." |
|
sd_mid_atn_prefix = "middle_block.1." |
|
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) |
|
|
|
for j in range(2): |
|
hf_mid_res_prefix = f"mid_block.resnets.{j}." |
|
sd_mid_res_prefix = f"middle_block.{2*j}." |
|
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) |
|
|
|
|
|
|
|
|
|
mapping = {k: k for k in unet_state_dict.keys()} |
|
for sd_name, hf_name in unet_conversion_map: |
|
mapping[hf_name] = sd_name |
|
for k, v in mapping.items(): |
|
if "resnets" in k: |
|
for sd_part, hf_part in unet_conversion_map_resnet: |
|
v = v.replace(hf_part, sd_part) |
|
mapping[k] = v |
|
for k, v in mapping.items(): |
|
for sd_part, hf_part in unet_conversion_map_layer: |
|
v = v.replace(hf_part, sd_part) |
|
mapping[k] = v |
|
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} |
|
|
|
if v2: |
|
conv_transformer_to_linear(new_state_dict) |
|
|
|
return new_state_dict |
|
|
|
|
|
def controlnet_conversion_map(): |
|
unet_conversion_map = [ |
|
("time_embed.0.weight", "time_embedding.linear_1.weight"), |
|
("time_embed.0.bias", "time_embedding.linear_1.bias"), |
|
("time_embed.2.weight", "time_embedding.linear_2.weight"), |
|
("time_embed.2.bias", "time_embedding.linear_2.bias"), |
|
("input_blocks.0.0.weight", "conv_in.weight"), |
|
("input_blocks.0.0.bias", "conv_in.bias"), |
|
("middle_block_out.0.weight", "controlnet_mid_block.weight"), |
|
("middle_block_out.0.bias", "controlnet_mid_block.bias"), |
|
] |
|
|
|
unet_conversion_map_resnet = [ |
|
("in_layers.0", "norm1"), |
|
("in_layers.2", "conv1"), |
|
("out_layers.0", "norm2"), |
|
("out_layers.3", "conv2"), |
|
("emb_layers.1", "time_emb_proj"), |
|
("skip_connection", "conv_shortcut"), |
|
] |
|
|
|
unet_conversion_map_layer = [] |
|
for i in range(4): |
|
for j in range(2): |
|
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." |
|
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." |
|
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) |
|
|
|
if i < 3: |
|
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." |
|
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1." |
|
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) |
|
|
|
if i < 3: |
|
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." |
|
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op." |
|
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) |
|
|
|
hf_mid_atn_prefix = "mid_block.attentions.0." |
|
sd_mid_atn_prefix = "middle_block.1." |
|
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) |
|
|
|
for j in range(2): |
|
hf_mid_res_prefix = f"mid_block.resnets.{j}." |
|
sd_mid_res_prefix = f"middle_block.{2*j}." |
|
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) |
|
|
|
controlnet_cond_embedding_names = ["conv_in"] + [f"blocks.{i}" for i in range(6)] + ["conv_out"] |
|
for i, hf_prefix in enumerate(controlnet_cond_embedding_names): |
|
hf_prefix = f"controlnet_cond_embedding.{hf_prefix}." |
|
sd_prefix = f"input_hint_block.{i*2}." |
|
unet_conversion_map_layer.append((sd_prefix, hf_prefix)) |
|
|
|
for i in range(12): |
|
hf_prefix = f"controlnet_down_blocks.{i}." |
|
sd_prefix = f"zero_convs.{i}.0." |
|
unet_conversion_map_layer.append((sd_prefix, hf_prefix)) |
|
|
|
return unet_conversion_map, unet_conversion_map_resnet, unet_conversion_map_layer |
|
|
|
|
|
def convert_controlnet_state_dict_to_sd(controlnet_state_dict): |
|
unet_conversion_map, unet_conversion_map_resnet, unet_conversion_map_layer = controlnet_conversion_map() |
|
|
|
mapping = {k: k for k in controlnet_state_dict.keys()} |
|
for sd_name, diffusers_name in unet_conversion_map: |
|
mapping[diffusers_name] = sd_name |
|
for k, v in mapping.items(): |
|
if "resnets" in k: |
|
for sd_part, diffusers_part in unet_conversion_map_resnet: |
|
v = v.replace(diffusers_part, sd_part) |
|
mapping[k] = v |
|
for k, v in mapping.items(): |
|
for sd_part, diffusers_part in unet_conversion_map_layer: |
|
v = v.replace(diffusers_part, sd_part) |
|
mapping[k] = v |
|
new_state_dict = {v: controlnet_state_dict[k] for k, v in mapping.items()} |
|
return new_state_dict |
|
|
|
|
|
def convert_controlnet_state_dict_to_diffusers(controlnet_state_dict): |
|
unet_conversion_map, unet_conversion_map_resnet, unet_conversion_map_layer = controlnet_conversion_map() |
|
|
|
mapping = {k: k for k in controlnet_state_dict.keys()} |
|
for sd_name, diffusers_name in unet_conversion_map: |
|
mapping[sd_name] = diffusers_name |
|
for k, v in mapping.items(): |
|
for sd_part, diffusers_part in unet_conversion_map_layer: |
|
v = v.replace(sd_part, diffusers_part) |
|
mapping[k] = v |
|
for k, v in mapping.items(): |
|
if "resnets" in v: |
|
for sd_part, diffusers_part in unet_conversion_map_resnet: |
|
v = v.replace(sd_part, diffusers_part) |
|
mapping[k] = v |
|
new_state_dict = {v: controlnet_state_dict[k] for k, v in mapping.items()} |
|
return new_state_dict |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def reshape_weight_for_sd(w): |
|
|
|
return w.reshape(*w.shape, 1, 1) |
|
|
|
|
|
def convert_vae_state_dict(vae_state_dict): |
|
vae_conversion_map = [ |
|
|
|
("nin_shortcut", "conv_shortcut"), |
|
("norm_out", "conv_norm_out"), |
|
("mid.attn_1.", "mid_block.attentions.0."), |
|
] |
|
|
|
for i in range(4): |
|
|
|
for j in range(2): |
|
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}." |
|
sd_down_prefix = f"encoder.down.{i}.block.{j}." |
|
vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) |
|
|
|
if i < 3: |
|
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0." |
|
sd_downsample_prefix = f"down.{i}.downsample." |
|
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) |
|
|
|
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." |
|
sd_upsample_prefix = f"up.{3-i}.upsample." |
|
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) |
|
|
|
|
|
|
|
for j in range(3): |
|
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}." |
|
sd_up_prefix = f"decoder.up.{3-i}.block.{j}." |
|
vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) |
|
|
|
|
|
for i in range(2): |
|
hf_mid_res_prefix = f"mid_block.resnets.{i}." |
|
sd_mid_res_prefix = f"mid.block_{i+1}." |
|
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) |
|
|
|
if diffusers.__version__ < "0.17.0": |
|
vae_conversion_map_attn = [ |
|
|
|
("norm.", "group_norm."), |
|
("q.", "query."), |
|
("k.", "key."), |
|
("v.", "value."), |
|
("proj_out.", "proj_attn."), |
|
] |
|
else: |
|
vae_conversion_map_attn = [ |
|
|
|
("norm.", "group_norm."), |
|
("q.", "to_q."), |
|
("k.", "to_k."), |
|
("v.", "to_v."), |
|
("proj_out.", "to_out.0."), |
|
] |
|
|
|
mapping = {k: k for k in vae_state_dict.keys()} |
|
for k, v in mapping.items(): |
|
for sd_part, hf_part in vae_conversion_map: |
|
v = v.replace(hf_part, sd_part) |
|
mapping[k] = v |
|
for k, v in mapping.items(): |
|
if "attentions" in k: |
|
for sd_part, hf_part in vae_conversion_map_attn: |
|
v = v.replace(hf_part, sd_part) |
|
mapping[k] = v |
|
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()} |
|
weights_to_convert = ["q", "k", "v", "proj_out"] |
|
for k, v in new_state_dict.items(): |
|
for weight_name in weights_to_convert: |
|
if f"mid.attn_1.{weight_name}.weight" in k: |
|
|
|
new_state_dict[k] = reshape_weight_for_sd(v) |
|
|
|
return new_state_dict |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def is_safetensors(path): |
|
return os.path.splitext(path)[1].lower() == ".safetensors" |
|
|
|
|
|
def load_checkpoint_with_text_encoder_conversion(ckpt_path, device="cpu"): |
|
|
|
TEXT_ENCODER_KEY_REPLACEMENTS = [ |
|
("cond_stage_model.transformer.embeddings.", "cond_stage_model.transformer.text_model.embeddings."), |
|
("cond_stage_model.transformer.encoder.", "cond_stage_model.transformer.text_model.encoder."), |
|
("cond_stage_model.transformer.final_layer_norm.", "cond_stage_model.transformer.text_model.final_layer_norm."), |
|
] |
|
|
|
if is_safetensors(ckpt_path): |
|
checkpoint = None |
|
state_dict = load_file(ckpt_path) |
|
else: |
|
checkpoint = torch.load(ckpt_path, map_location=device) |
|
if "state_dict" in checkpoint: |
|
state_dict = checkpoint["state_dict"] |
|
else: |
|
state_dict = checkpoint |
|
checkpoint = None |
|
|
|
key_reps = [] |
|
for rep_from, rep_to in TEXT_ENCODER_KEY_REPLACEMENTS: |
|
for key in state_dict.keys(): |
|
if key.startswith(rep_from): |
|
new_key = rep_to + key[len(rep_from) :] |
|
key_reps.append((key, new_key)) |
|
|
|
for key, new_key in key_reps: |
|
state_dict[new_key] = state_dict[key] |
|
del state_dict[key] |
|
|
|
return checkpoint, state_dict |
|
|
|
|
|
|
|
def load_models_from_stable_diffusion_checkpoint(v2, ckpt_path, device="cpu", dtype=None, unet_use_linear_projection_in_v2=True): |
|
_, state_dict = load_checkpoint_with_text_encoder_conversion(ckpt_path, device) |
|
|
|
|
|
unet_config = create_unet_diffusers_config(v2, unet_use_linear_projection_in_v2) |
|
converted_unet_checkpoint = convert_ldm_unet_checkpoint(v2, state_dict, unet_config) |
|
|
|
unet = UNet2DConditionModel(**unet_config).to(device) |
|
info = unet.load_state_dict(converted_unet_checkpoint) |
|
logger.info(f"loading u-net: {info}") |
|
|
|
|
|
vae_config = create_vae_diffusers_config() |
|
converted_vae_checkpoint = convert_ldm_vae_checkpoint(state_dict, vae_config) |
|
|
|
vae = AutoencoderKL(**vae_config).to(device) |
|
info = vae.load_state_dict(converted_vae_checkpoint) |
|
logger.info(f"loading vae: {info}") |
|
|
|
|
|
if v2: |
|
converted_text_encoder_checkpoint = convert_ldm_clip_checkpoint_v2(state_dict, 77) |
|
cfg = CLIPTextConfig( |
|
vocab_size=49408, |
|
hidden_size=1024, |
|
intermediate_size=4096, |
|
num_hidden_layers=23, |
|
num_attention_heads=16, |
|
max_position_embeddings=77, |
|
hidden_act="gelu", |
|
layer_norm_eps=1e-05, |
|
dropout=0.0, |
|
attention_dropout=0.0, |
|
initializer_range=0.02, |
|
initializer_factor=1.0, |
|
pad_token_id=1, |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
model_type="clip_text_model", |
|
projection_dim=512, |
|
torch_dtype="float32", |
|
transformers_version="4.25.0.dev0", |
|
) |
|
text_model = CLIPTextModel._from_config(cfg) |
|
info = text_model.load_state_dict(converted_text_encoder_checkpoint) |
|
else: |
|
converted_text_encoder_checkpoint = convert_ldm_clip_checkpoint_v1(state_dict) |
|
|
|
|
|
|
|
|
|
|
|
cfg = CLIPTextConfig( |
|
vocab_size=49408, |
|
hidden_size=768, |
|
intermediate_size=3072, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
max_position_embeddings=77, |
|
hidden_act="quick_gelu", |
|
layer_norm_eps=1e-05, |
|
dropout=0.0, |
|
attention_dropout=0.0, |
|
initializer_range=0.02, |
|
initializer_factor=1.0, |
|
pad_token_id=1, |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
model_type="clip_text_model", |
|
projection_dim=768, |
|
torch_dtype="float32", |
|
) |
|
text_model = CLIPTextModel._from_config(cfg) |
|
info = text_model.load_state_dict(converted_text_encoder_checkpoint) |
|
logger.info(f"loading text encoder: {info}") |
|
|
|
return text_model, vae, unet |
|
|
|
|
|
def get_model_version_str_for_sd1_sd2(v2, v_parameterization): |
|
|
|
version_str = "sd" |
|
if v2: |
|
version_str += "_v2" |
|
else: |
|
version_str += "_v1" |
|
if v_parameterization: |
|
version_str += "_v" |
|
return version_str |
|
|
|
|
|
def convert_text_encoder_state_dict_to_sd_v2(checkpoint, make_dummy_weights=False): |
|
def convert_key(key): |
|
|
|
if ".position_ids" in key: |
|
return None |
|
|
|
|
|
key = key.replace("text_model.encoder.", "transformer.") |
|
key = key.replace("text_model.", "") |
|
if "layers" in key: |
|
|
|
key = key.replace(".layers.", ".resblocks.") |
|
if ".layer_norm" in key: |
|
key = key.replace(".layer_norm", ".ln_") |
|
elif ".mlp." in key: |
|
key = key.replace(".fc1.", ".c_fc.") |
|
key = key.replace(".fc2.", ".c_proj.") |
|
elif ".self_attn.out_proj" in key: |
|
key = key.replace(".self_attn.out_proj.", ".attn.out_proj.") |
|
elif ".self_attn." in key: |
|
key = None |
|
else: |
|
raise ValueError(f"unexpected key in DiffUsers model: {key}") |
|
elif ".position_embedding" in key: |
|
key = key.replace("embeddings.position_embedding.weight", "positional_embedding") |
|
elif ".token_embedding" in key: |
|
key = key.replace("embeddings.token_embedding.weight", "token_embedding.weight") |
|
elif "final_layer_norm" in key: |
|
key = key.replace("final_layer_norm", "ln_final") |
|
return key |
|
|
|
keys = list(checkpoint.keys()) |
|
new_sd = {} |
|
for key in keys: |
|
new_key = convert_key(key) |
|
if new_key is None: |
|
continue |
|
new_sd[new_key] = checkpoint[key] |
|
|
|
|
|
for key in keys: |
|
if "layers" in key and "q_proj" in key: |
|
|
|
key_q = key |
|
key_k = key.replace("q_proj", "k_proj") |
|
key_v = key.replace("q_proj", "v_proj") |
|
|
|
value_q = checkpoint[key_q] |
|
value_k = checkpoint[key_k] |
|
value_v = checkpoint[key_v] |
|
value = torch.cat([value_q, value_k, value_v]) |
|
|
|
new_key = key.replace("text_model.encoder.layers.", "transformer.resblocks.") |
|
new_key = new_key.replace(".self_attn.q_proj.", ".attn.in_proj_") |
|
new_sd[new_key] = value |
|
|
|
|
|
if make_dummy_weights: |
|
logger.info("make dummy weights for resblock.23, text_projection and logit scale.") |
|
keys = list(new_sd.keys()) |
|
for key in keys: |
|
if key.startswith("transformer.resblocks.22."): |
|
new_sd[key.replace(".22.", ".23.")] = new_sd[key].clone() |
|
|
|
|
|
new_sd["text_projection"] = torch.ones((1024, 1024), dtype=new_sd[keys[0]].dtype, device=new_sd[keys[0]].device) |
|
new_sd["logit_scale"] = torch.tensor(1) |
|
|
|
return new_sd |
|
|
|
|
|
def save_stable_diffusion_checkpoint( |
|
v2, output_file, text_encoder, unet, ckpt_path, epochs, steps, metadata, save_dtype=None, vae=None |
|
): |
|
if ckpt_path is not None: |
|
|
|
checkpoint, state_dict = load_checkpoint_with_text_encoder_conversion(ckpt_path) |
|
if checkpoint is None: |
|
checkpoint = {} |
|
strict = False |
|
else: |
|
strict = True |
|
if "state_dict" in state_dict: |
|
del state_dict["state_dict"] |
|
else: |
|
|
|
assert vae is not None, "VAE is required to save a checkpoint without a given checkpoint" |
|
checkpoint = {} |
|
state_dict = {} |
|
strict = False |
|
|
|
def update_sd(prefix, sd): |
|
for k, v in sd.items(): |
|
key = prefix + k |
|
assert not strict or key in state_dict, f"Illegal key in save SD: {key}" |
|
if save_dtype is not None: |
|
v = v.detach().clone().to("cpu").to(save_dtype) |
|
state_dict[key] = v |
|
|
|
|
|
unet_state_dict = convert_unet_state_dict_to_sd(v2, unet.state_dict()) |
|
update_sd("model.diffusion_model.", unet_state_dict) |
|
|
|
|
|
if v2: |
|
make_dummy = ckpt_path is None |
|
text_enc_dict = convert_text_encoder_state_dict_to_sd_v2(text_encoder.state_dict(), make_dummy) |
|
update_sd("cond_stage_model.model.", text_enc_dict) |
|
else: |
|
text_enc_dict = text_encoder.state_dict() |
|
update_sd("cond_stage_model.transformer.", text_enc_dict) |
|
|
|
|
|
if vae is not None: |
|
vae_dict = convert_vae_state_dict(vae.state_dict()) |
|
update_sd("first_stage_model.", vae_dict) |
|
|
|
|
|
key_count = len(state_dict.keys()) |
|
new_ckpt = {"state_dict": state_dict} |
|
|
|
|
|
try: |
|
if "epoch" in checkpoint: |
|
epochs += checkpoint["epoch"] |
|
if "global_step" in checkpoint: |
|
steps += checkpoint["global_step"] |
|
except: |
|
pass |
|
|
|
new_ckpt["epoch"] = epochs |
|
new_ckpt["global_step"] = steps |
|
|
|
if is_safetensors(output_file): |
|
|
|
save_file(state_dict, output_file, metadata) |
|
else: |
|
torch.save(new_ckpt, output_file) |
|
|
|
return key_count |
|
|
|
|
|
def save_diffusers_checkpoint(v2, output_dir, text_encoder, unet, pretrained_model_name_or_path, vae=None, use_safetensors=False): |
|
if pretrained_model_name_or_path is None: |
|
|
|
if v2: |
|
pretrained_model_name_or_path = DIFFUSERS_REF_MODEL_ID_V2 |
|
else: |
|
pretrained_model_name_or_path = DIFFUSERS_REF_MODEL_ID_V1 |
|
|
|
scheduler = DDIMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler") |
|
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer") |
|
if vae is None: |
|
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae") |
|
|
|
|
|
|
|
diffusers_unet = diffusers.UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet") |
|
diffusers_unet.load_state_dict(unet.state_dict()) |
|
|
|
pipeline = StableDiffusionPipeline( |
|
unet=diffusers_unet, |
|
text_encoder=text_encoder, |
|
vae=vae, |
|
scheduler=scheduler, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=None, |
|
requires_safety_checker=None, |
|
) |
|
pipeline.save_pretrained(output_dir, safe_serialization=use_safetensors) |
|
|
|
|
|
VAE_PREFIX = "first_stage_model." |
|
|
|
|
|
def load_vae(vae_id, dtype): |
|
logger.info(f"load VAE: {vae_id}") |
|
if os.path.isdir(vae_id) or not os.path.isfile(vae_id): |
|
|
|
try: |
|
vae = AutoencoderKL.from_pretrained(vae_id, subfolder=None, torch_dtype=dtype) |
|
except EnvironmentError as e: |
|
logger.error(f"exception occurs in loading vae: {e}") |
|
logger.error("retry with subfolder='vae'") |
|
vae = AutoencoderKL.from_pretrained(vae_id, subfolder="vae", torch_dtype=dtype) |
|
return vae |
|
|
|
|
|
vae_config = create_vae_diffusers_config() |
|
|
|
if vae_id.endswith(".bin"): |
|
|
|
converted_vae_checkpoint = torch.load(vae_id, map_location="cpu") |
|
else: |
|
|
|
vae_model = load_file(vae_id, "cpu") if is_safetensors(vae_id) else torch.load(vae_id, map_location="cpu") |
|
vae_sd = vae_model["state_dict"] if "state_dict" in vae_model else vae_model |
|
|
|
|
|
full_model = False |
|
for vae_key in vae_sd: |
|
if vae_key.startswith(VAE_PREFIX): |
|
full_model = True |
|
break |
|
if not full_model: |
|
sd = {} |
|
for key, value in vae_sd.items(): |
|
sd[VAE_PREFIX + key] = value |
|
vae_sd = sd |
|
del sd |
|
|
|
|
|
converted_vae_checkpoint = convert_ldm_vae_checkpoint(vae_sd, vae_config) |
|
|
|
vae = AutoencoderKL(**vae_config) |
|
vae.load_state_dict(converted_vae_checkpoint) |
|
return vae |
|
|
|
|
|
|
|
|
|
|
|
def make_bucket_resolutions(max_reso, min_size=256, max_size=1024, divisible=64): |
|
max_width, max_height = max_reso |
|
max_area = max_width * max_height |
|
|
|
resos = set() |
|
|
|
width = int(math.sqrt(max_area) // divisible) * divisible |
|
resos.add((width, width)) |
|
|
|
width = min_size |
|
while width <= max_size: |
|
height = min(max_size, int((max_area // width) // divisible) * divisible) |
|
if height >= min_size: |
|
resos.add((width, height)) |
|
resos.add((height, width)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
width += divisible |
|
|
|
resos = list(resos) |
|
resos.sort() |
|
return resos |
|
|
|
|
|
if __name__ == "__main__": |
|
resos = make_bucket_resolutions((512, 768)) |
|
logger.info(f"{len(resos)}") |
|
logger.info(f"{resos}") |
|
aspect_ratios = [w / h for w, h in resos] |
|
logger.info(f"{aspect_ratios}") |
|
|
|
ars = set() |
|
for ar in aspect_ratios: |
|
if ar in ars: |
|
logger.error(f"error! duplicate ar: {ar}") |
|
ars.add(ar) |
|
|