private-model / lora-scripts /sd-scripts /tools /cache_text_encoder_outputs.py
ACCC1380's picture
Upload lora-scripts/sd-scripts/tools/cache_text_encoder_outputs.py with huggingface_hub
479e33f verified
raw
history blame
7.96 kB
# text encoder出力のdiskへの事前キャッシュを行う / cache text encoder outputs to disk in advance
import argparse
import math
from multiprocessing import Value
import os
from accelerate.utils import set_seed
import torch
from tqdm import tqdm
from library import config_util
from library import train_util
from library import sdxl_train_util
from library.config_util import (
ConfigSanitizer,
BlueprintGenerator,
)
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
def cache_to_disk(args: argparse.Namespace) -> None:
train_util.prepare_dataset_args(args, True)
# check cache arg
assert (
args.cache_text_encoder_outputs_to_disk
), "cache_text_encoder_outputs_to_disk must be True / cache_text_encoder_outputs_to_diskはTrueである必要があります"
# できるだけ準備はしておくが今のところSDXLのみしか動かない
assert (
args.sdxl
), "cache_text_encoder_outputs_to_disk is only available for SDXL / cache_text_encoder_outputs_to_diskはSDXLのみ利用可能です"
use_dreambooth_method = args.in_json is None
if args.seed is not None:
set_seed(args.seed) # 乱数系列を初期化する
# tokenizerを準備する:datasetを動かすために必要
if args.sdxl:
tokenizer1, tokenizer2 = sdxl_train_util.load_tokenizers(args)
tokenizers = [tokenizer1, tokenizer2]
else:
tokenizer = train_util.load_tokenizer(args)
tokenizers = [tokenizer]
# データセットを準備する
if args.dataset_class is None:
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, False, True))
if args.dataset_config is not None:
logger.info(f"Load dataset config from {args.dataset_config}")
user_config = config_util.load_user_config(args.dataset_config)
ignored = ["train_data_dir", "in_json"]
if any(getattr(args, attr) is not None for attr in ignored):
logger.warning(
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
", ".join(ignored)
)
)
else:
if use_dreambooth_method:
logger.info("Using DreamBooth method.")
user_config = {
"datasets": [
{
"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(
args.train_data_dir, args.reg_data_dir
)
}
]
}
else:
logger.info("Training with captions.")
user_config = {
"datasets": [
{
"subsets": [
{
"image_dir": args.train_data_dir,
"metadata_file": args.in_json,
}
]
}
]
}
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizers)
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
else:
train_dataset_group = train_util.load_arbitrary_dataset(args, tokenizers)
current_epoch = Value("i", 0)
current_step = Value("i", 0)
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)
# acceleratorを準備する
logger.info("prepare accelerator")
accelerator = train_util.prepare_accelerator(args)
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype, _ = train_util.prepare_dtype(args)
# モデルを読み込む
logger.info("load model")
if args.sdxl:
(_, text_encoder1, text_encoder2, _, _, _, _) = sdxl_train_util.load_target_model(args, accelerator, "sdxl", weight_dtype)
text_encoders = [text_encoder1, text_encoder2]
else:
text_encoder1, _, _, _ = train_util.load_target_model(args, weight_dtype, accelerator)
text_encoders = [text_encoder1]
for text_encoder in text_encoders:
text_encoder.to(accelerator.device, dtype=weight_dtype)
text_encoder.requires_grad_(False)
text_encoder.eval()
# dataloaderを準備する
train_dataset_group.set_caching_mode("text")
# DataLoaderのプロセス数:0 は persistent_workers が使えないので注意
n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers
train_dataloader = torch.utils.data.DataLoader(
train_dataset_group,
batch_size=1,
shuffle=True,
collate_fn=collator,
num_workers=n_workers,
persistent_workers=args.persistent_data_loader_workers,
)
# acceleratorを使ってモデルを準備する:マルチGPUで使えるようになるはず
train_dataloader = accelerator.prepare(train_dataloader)
# データ取得のためのループ
for batch in tqdm(train_dataloader):
absolute_paths = batch["absolute_paths"]
input_ids1_list = batch["input_ids1_list"]
input_ids2_list = batch["input_ids2_list"]
image_infos = []
for absolute_path, input_ids1, input_ids2 in zip(absolute_paths, input_ids1_list, input_ids2_list):
image_info = train_util.ImageInfo(absolute_path, 1, "dummy", False, absolute_path)
image_info.text_encoder_outputs_npz = os.path.splitext(absolute_path)[0] + train_util.TEXT_ENCODER_OUTPUTS_CACHE_SUFFIX
image_info
if args.skip_existing:
if os.path.exists(image_info.text_encoder_outputs_npz):
logger.warning(f"Skipping {image_info.text_encoder_outputs_npz} because it already exists.")
continue
image_info.input_ids1 = input_ids1
image_info.input_ids2 = input_ids2
image_infos.append(image_info)
if len(image_infos) > 0:
b_input_ids1 = torch.stack([image_info.input_ids1 for image_info in image_infos])
b_input_ids2 = torch.stack([image_info.input_ids2 for image_info in image_infos])
train_util.cache_batch_text_encoder_outputs(
image_infos, tokenizers, text_encoders, args.max_token_length, True, b_input_ids1, b_input_ids2, weight_dtype
)
accelerator.wait_for_everyone()
accelerator.print(f"Finished caching latents for {len(train_dataset_group)} batches.")
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
train_util.add_sd_models_arguments(parser)
train_util.add_training_arguments(parser, True)
train_util.add_dataset_arguments(parser, True, True, True)
config_util.add_config_arguments(parser)
sdxl_train_util.add_sdxl_training_arguments(parser)
parser.add_argument("--sdxl", action="store_true", help="Use SDXL model / SDXLモデルを使用する")
parser.add_argument(
"--skip_existing",
action="store_true",
help="skip images if npz already exists (both normal and flipped exists if flip_aug is enabled) / npzが既に存在する画像をスキップする(flip_aug有効時は通常、反転の両方が存在する画像をスキップ)",
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
args = train_util.read_config_from_file(args, parser)
cache_to_disk(args)