|
from typing import List, NamedTuple, Any |
|
import numpy as np |
|
import cv2 |
|
import torch |
|
from safetensors.torch import load_file |
|
|
|
from library.original_unet import UNet2DConditionModel, SampleOutput |
|
|
|
import library.model_util as model_util |
|
from library.utils import setup_logging |
|
setup_logging() |
|
import logging |
|
logger = logging.getLogger(__name__) |
|
|
|
class ControlNetInfo(NamedTuple): |
|
unet: Any |
|
net: Any |
|
prep: Any |
|
weight: float |
|
ratio: float |
|
|
|
|
|
class ControlNet(torch.nn.Module): |
|
def __init__(self) -> None: |
|
super().__init__() |
|
|
|
|
|
self.control_model = torch.nn.Module() |
|
|
|
dims = [320, 320, 320, 320, 640, 640, 640, 1280, 1280, 1280, 1280, 1280] |
|
zero_convs = torch.nn.ModuleList() |
|
for i, dim in enumerate(dims): |
|
sub_list = torch.nn.ModuleList([torch.nn.Conv2d(dim, dim, 1)]) |
|
zero_convs.append(sub_list) |
|
self.control_model.add_module("zero_convs", zero_convs) |
|
|
|
middle_block_out = torch.nn.Conv2d(1280, 1280, 1) |
|
self.control_model.add_module("middle_block_out", torch.nn.ModuleList([middle_block_out])) |
|
|
|
dims = [16, 16, 32, 32, 96, 96, 256, 320] |
|
strides = [1, 1, 2, 1, 2, 1, 2, 1] |
|
prev_dim = 3 |
|
input_hint_block = torch.nn.Sequential() |
|
for i, (dim, stride) in enumerate(zip(dims, strides)): |
|
input_hint_block.append(torch.nn.Conv2d(prev_dim, dim, 3, stride, 1)) |
|
if i < len(dims) - 1: |
|
input_hint_block.append(torch.nn.SiLU()) |
|
prev_dim = dim |
|
self.control_model.add_module("input_hint_block", input_hint_block) |
|
|
|
|
|
def load_control_net(v2, unet, model): |
|
device = unet.device |
|
|
|
|
|
|
|
logger.info(f"ControlNet: loading control SD model : {model}") |
|
|
|
if model_util.is_safetensors(model): |
|
ctrl_sd_sd = load_file(model) |
|
else: |
|
ctrl_sd_sd = torch.load(model, map_location="cpu") |
|
ctrl_sd_sd = ctrl_sd_sd.pop("state_dict", ctrl_sd_sd) |
|
|
|
|
|
is_difference = "difference" in ctrl_sd_sd |
|
logger.info(f"ControlNet: loading difference: {is_difference}") |
|
|
|
|
|
|
|
ctrl_unet_sd_sd = model_util.convert_unet_state_dict_to_sd(v2, unet.state_dict()) |
|
|
|
|
|
for key in list(ctrl_unet_sd_sd.keys()): |
|
ctrl_unet_sd_sd["model.diffusion_model." + key] = ctrl_unet_sd_sd.pop(key).clone() |
|
|
|
zero_conv_sd = {} |
|
for key in list(ctrl_sd_sd.keys()): |
|
if key.startswith("control_"): |
|
unet_key = "model.diffusion_" + key[len("control_") :] |
|
if unet_key not in ctrl_unet_sd_sd: |
|
zero_conv_sd[key] = ctrl_sd_sd[key] |
|
continue |
|
if is_difference: |
|
ctrl_unet_sd_sd[unet_key] += ctrl_sd_sd[key].to(device, dtype=unet.dtype) |
|
else: |
|
ctrl_unet_sd_sd[unet_key] = ctrl_sd_sd[key].to(device, dtype=unet.dtype) |
|
|
|
unet_config = model_util.create_unet_diffusers_config(v2) |
|
ctrl_unet_du_sd = model_util.convert_ldm_unet_checkpoint(v2, ctrl_unet_sd_sd, unet_config) |
|
|
|
|
|
ctrl_unet = UNet2DConditionModel(**unet_config) |
|
info = ctrl_unet.load_state_dict(ctrl_unet_du_sd) |
|
logger.info(f"ControlNet: loading Control U-Net: {info}") |
|
|
|
|
|
|
|
ctrl_net = ControlNet() |
|
info = ctrl_net.load_state_dict(zero_conv_sd) |
|
logger.info("ControlNet: loading ControlNet: {info}") |
|
|
|
ctrl_unet.to(unet.device, dtype=unet.dtype) |
|
ctrl_net.to(unet.device, dtype=unet.dtype) |
|
return ctrl_unet, ctrl_net |
|
|
|
|
|
def load_preprocess(prep_type: str): |
|
if prep_type is None or prep_type.lower() == "none": |
|
return None |
|
|
|
if prep_type.startswith("canny"): |
|
args = prep_type.split("_") |
|
th1 = int(args[1]) if len(args) >= 2 else 63 |
|
th2 = int(args[2]) if len(args) >= 3 else 191 |
|
|
|
def canny(img): |
|
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) |
|
return cv2.Canny(img, th1, th2) |
|
|
|
return canny |
|
|
|
logger.info(f"Unsupported prep type: {prep_type}") |
|
return None |
|
|
|
|
|
def preprocess_ctrl_net_hint_image(image): |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
|
|
|
|
image = image[None].transpose(0, 3, 1, 2) |
|
image = torch.from_numpy(image) |
|
return image |
|
|
|
|
|
def get_guided_hints(control_nets: List[ControlNetInfo], num_latent_input, b_size, hints): |
|
guided_hints = [] |
|
for i, cnet_info in enumerate(control_nets): |
|
|
|
b_hints = [] |
|
if len(hints) == 1: |
|
hint = hints[0] |
|
if cnet_info.prep is not None: |
|
hint = cnet_info.prep(hint) |
|
hint = preprocess_ctrl_net_hint_image(hint) |
|
b_hints = [hint for _ in range(b_size)] |
|
else: |
|
for bi in range(b_size): |
|
hint = hints[(bi * len(control_nets) + i) % len(hints)] |
|
if cnet_info.prep is not None: |
|
hint = cnet_info.prep(hint) |
|
hint = preprocess_ctrl_net_hint_image(hint) |
|
b_hints.append(hint) |
|
b_hints = torch.cat(b_hints, dim=0) |
|
b_hints = b_hints.to(cnet_info.unet.device, dtype=cnet_info.unet.dtype) |
|
|
|
guided_hint = cnet_info.net.control_model.input_hint_block(b_hints) |
|
guided_hints.append(guided_hint) |
|
return guided_hints |
|
|
|
|
|
def call_unet_and_control_net( |
|
step, |
|
num_latent_input, |
|
original_unet, |
|
control_nets: List[ControlNetInfo], |
|
guided_hints, |
|
current_ratio, |
|
sample, |
|
timestep, |
|
encoder_hidden_states, |
|
encoder_hidden_states_for_control_net, |
|
): |
|
|
|
|
|
cnet_cnt = len(control_nets) |
|
cnet_idx = step % cnet_cnt |
|
cnet_info = control_nets[cnet_idx] |
|
|
|
|
|
if cnet_info.ratio < current_ratio: |
|
return original_unet(sample, timestep, encoder_hidden_states) |
|
|
|
guided_hint = guided_hints[cnet_idx] |
|
|
|
|
|
if guided_hint.shape[-2:] != sample.shape[-2:]: |
|
|
|
org_dtype = guided_hint.dtype |
|
if org_dtype == torch.bfloat16: |
|
guided_hint = guided_hint.to(torch.float32) |
|
guided_hint = torch.nn.functional.interpolate(guided_hint, size=sample.shape[-2:], mode="bicubic") |
|
if org_dtype == torch.bfloat16: |
|
guided_hint = guided_hint.to(org_dtype) |
|
|
|
guided_hint = guided_hint.repeat((num_latent_input, 1, 1, 1)) |
|
outs = unet_forward( |
|
True, cnet_info.net, cnet_info.unet, guided_hint, None, sample, timestep, encoder_hidden_states_for_control_net |
|
) |
|
outs = [o * cnet_info.weight for o in outs] |
|
|
|
|
|
return unet_forward(False, cnet_info.net, original_unet, None, outs, sample, timestep, encoder_hidden_states) |
|
|
|
|
|
""" |
|
# これはmergeのバージョン |
|
# ControlNet |
|
cnet_outs_list = [] |
|
for i, cnet_info in enumerate(control_nets): |
|
# logger.info(current_ratio, cnet_info.prep, cnet_info.weight, cnet_info.ratio) |
|
if cnet_info.ratio < current_ratio: |
|
continue |
|
guided_hint = guided_hints[i] |
|
outs = unet_forward(True, cnet_info.net, cnet_info.unet, guided_hint, None, sample, timestep, encoder_hidden_states) |
|
for i in range(len(outs)): |
|
outs[i] *= cnet_info.weight |
|
|
|
cnet_outs_list.append(outs) |
|
|
|
count = len(cnet_outs_list) |
|
if count == 0: |
|
return original_unet(sample, timestep, encoder_hidden_states) |
|
|
|
# sum of controlnets |
|
for i in range(1, count): |
|
cnet_outs_list[0] += cnet_outs_list[i] |
|
|
|
# U-Net |
|
return unet_forward(False, cnet_info.net, original_unet, None, cnet_outs_list[0], sample, timestep, encoder_hidden_states) |
|
""" |
|
|
|
|
|
def unet_forward( |
|
is_control_net, |
|
control_net: ControlNet, |
|
unet: UNet2DConditionModel, |
|
guided_hint, |
|
ctrl_outs, |
|
sample, |
|
timestep, |
|
encoder_hidden_states, |
|
): |
|
|
|
default_overall_up_factor = 2**unet.num_upsamplers |
|
|
|
forward_upsample_size = False |
|
upsample_size = None |
|
|
|
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): |
|
logger.info("Forward upsample size to force interpolation output size.") |
|
forward_upsample_size = True |
|
|
|
|
|
timesteps = timestep |
|
if not torch.is_tensor(timesteps): |
|
|
|
|
|
is_mps = sample.device.type == "mps" |
|
if isinstance(timestep, float): |
|
dtype = torch.float32 if is_mps else torch.float64 |
|
else: |
|
dtype = torch.int32 if is_mps else torch.int64 |
|
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) |
|
elif len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(sample.device) |
|
|
|
|
|
timesteps = timesteps.expand(sample.shape[0]) |
|
|
|
t_emb = unet.time_proj(timesteps) |
|
|
|
|
|
|
|
|
|
t_emb = t_emb.to(dtype=unet.dtype) |
|
emb = unet.time_embedding(t_emb) |
|
|
|
outs = [] |
|
zc_idx = 0 |
|
|
|
|
|
sample = unet.conv_in(sample) |
|
if is_control_net: |
|
sample += guided_hint |
|
outs.append(control_net.control_model.zero_convs[zc_idx][0](sample)) |
|
zc_idx += 1 |
|
|
|
|
|
down_block_res_samples = (sample,) |
|
for downsample_block in unet.down_blocks: |
|
if downsample_block.has_cross_attention: |
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
) |
|
else: |
|
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) |
|
if is_control_net: |
|
for rs in res_samples: |
|
outs.append(control_net.control_model.zero_convs[zc_idx][0](rs)) |
|
zc_idx += 1 |
|
|
|
down_block_res_samples += res_samples |
|
|
|
|
|
sample = unet.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states) |
|
if is_control_net: |
|
outs.append(control_net.control_model.middle_block_out[0](sample)) |
|
return outs |
|
|
|
if not is_control_net: |
|
sample += ctrl_outs.pop() |
|
|
|
|
|
for i, upsample_block in enumerate(unet.up_blocks): |
|
is_final_block = i == len(unet.up_blocks) - 1 |
|
|
|
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] |
|
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] |
|
|
|
if not is_control_net and len(ctrl_outs) > 0: |
|
res_samples = list(res_samples) |
|
apply_ctrl_outs = ctrl_outs[-len(res_samples) :] |
|
ctrl_outs = ctrl_outs[: -len(res_samples)] |
|
for j in range(len(res_samples)): |
|
res_samples[j] = res_samples[j] + apply_ctrl_outs[j] |
|
res_samples = tuple(res_samples) |
|
|
|
|
|
|
|
if not is_final_block and forward_upsample_size: |
|
upsample_size = down_block_res_samples[-1].shape[2:] |
|
|
|
if upsample_block.has_cross_attention: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
encoder_hidden_states=encoder_hidden_states, |
|
upsample_size=upsample_size, |
|
) |
|
else: |
|
sample = upsample_block( |
|
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size |
|
) |
|
|
|
sample = unet.conv_norm_out(sample) |
|
sample = unet.conv_act(sample) |
|
sample = unet.conv_out(sample) |
|
|
|
return SampleOutput(sample=sample) |
|
|