|
import argparse |
|
import math |
|
import os |
|
from multiprocessing import Value |
|
import toml |
|
|
|
from tqdm import tqdm |
|
|
|
import torch |
|
from library.device_utils import init_ipex, clean_memory_on_device |
|
|
|
|
|
init_ipex() |
|
|
|
from accelerate.utils import set_seed |
|
from diffusers import DDPMScheduler |
|
from transformers import CLIPTokenizer |
|
from library import deepspeed_utils, model_util |
|
|
|
import library.train_util as train_util |
|
import library.huggingface_util as huggingface_util |
|
import library.config_util as config_util |
|
from library.config_util import ( |
|
ConfigSanitizer, |
|
BlueprintGenerator, |
|
) |
|
import library.custom_train_functions as custom_train_functions |
|
from library.custom_train_functions import ( |
|
apply_snr_weight, |
|
prepare_scheduler_for_custom_training, |
|
scale_v_prediction_loss_like_noise_prediction, |
|
add_v_prediction_like_loss, |
|
apply_debiased_estimation, |
|
apply_masked_loss, |
|
) |
|
from library.utils import setup_logging, add_logging_arguments |
|
|
|
setup_logging() |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
imagenet_templates_small = [ |
|
"a photo of a {}", |
|
"a rendering of a {}", |
|
"a cropped photo of the {}", |
|
"the photo of a {}", |
|
"a photo of a clean {}", |
|
"a photo of a dirty {}", |
|
"a dark photo of the {}", |
|
"a photo of my {}", |
|
"a photo of the cool {}", |
|
"a close-up photo of a {}", |
|
"a bright photo of the {}", |
|
"a cropped photo of a {}", |
|
"a photo of the {}", |
|
"a good photo of the {}", |
|
"a photo of one {}", |
|
"a close-up photo of the {}", |
|
"a rendition of the {}", |
|
"a photo of the clean {}", |
|
"a rendition of a {}", |
|
"a photo of a nice {}", |
|
"a good photo of a {}", |
|
"a photo of the nice {}", |
|
"a photo of the small {}", |
|
"a photo of the weird {}", |
|
"a photo of the large {}", |
|
"a photo of a cool {}", |
|
"a photo of a small {}", |
|
] |
|
|
|
imagenet_style_templates_small = [ |
|
"a painting in the style of {}", |
|
"a rendering in the style of {}", |
|
"a cropped painting in the style of {}", |
|
"the painting in the style of {}", |
|
"a clean painting in the style of {}", |
|
"a dirty painting in the style of {}", |
|
"a dark painting in the style of {}", |
|
"a picture in the style of {}", |
|
"a cool painting in the style of {}", |
|
"a close-up painting in the style of {}", |
|
"a bright painting in the style of {}", |
|
"a cropped painting in the style of {}", |
|
"a good painting in the style of {}", |
|
"a close-up painting in the style of {}", |
|
"a rendition in the style of {}", |
|
"a nice painting in the style of {}", |
|
"a small painting in the style of {}", |
|
"a weird painting in the style of {}", |
|
"a large painting in the style of {}", |
|
] |
|
|
|
|
|
class TextualInversionTrainer: |
|
def __init__(self): |
|
self.vae_scale_factor = 0.18215 |
|
self.is_sdxl = False |
|
|
|
def assert_extra_args(self, args, train_dataset_group): |
|
pass |
|
|
|
def load_target_model(self, args, weight_dtype, accelerator): |
|
text_encoder, vae, unet, _ = train_util.load_target_model(args, weight_dtype, accelerator) |
|
return model_util.get_model_version_str_for_sd1_sd2(args.v2, args.v_parameterization), text_encoder, vae, unet |
|
|
|
def load_tokenizer(self, args): |
|
tokenizer = train_util.load_tokenizer(args) |
|
return tokenizer |
|
|
|
def assert_token_string(self, token_string, tokenizers: CLIPTokenizer): |
|
pass |
|
|
|
def get_text_cond(self, args, accelerator, batch, tokenizers, text_encoders, weight_dtype): |
|
with torch.enable_grad(): |
|
input_ids = batch["input_ids"].to(accelerator.device) |
|
encoder_hidden_states = train_util.get_hidden_states(args, input_ids, tokenizers[0], text_encoders[0], None) |
|
return encoder_hidden_states |
|
|
|
def call_unet(self, args, accelerator, unet, noisy_latents, timesteps, text_conds, batch, weight_dtype): |
|
noise_pred = unet(noisy_latents, timesteps, text_conds).sample |
|
return noise_pred |
|
|
|
def sample_images(self, accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet, prompt_replacement): |
|
train_util.sample_images( |
|
accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet, prompt_replacement |
|
) |
|
|
|
def save_weights(self, file, updated_embs, save_dtype, metadata): |
|
state_dict = {"emb_params": updated_embs[0]} |
|
|
|
if save_dtype is not None: |
|
for key in list(state_dict.keys()): |
|
v = state_dict[key] |
|
v = v.detach().clone().to("cpu").to(save_dtype) |
|
state_dict[key] = v |
|
|
|
if os.path.splitext(file)[1] == ".safetensors": |
|
from safetensors.torch import save_file |
|
|
|
save_file(state_dict, file, metadata) |
|
else: |
|
torch.save(state_dict, file) |
|
|
|
def load_weights(self, file): |
|
if os.path.splitext(file)[1] == ".safetensors": |
|
from safetensors.torch import load_file |
|
|
|
data = load_file(file) |
|
else: |
|
|
|
data = torch.load(file, map_location="cpu") |
|
if type(data) != dict: |
|
raise ValueError(f"weight file is not dict / 重みファイルがdict形式ではありません: {file}") |
|
|
|
if "string_to_param" in data: |
|
data = data["string_to_param"] |
|
if hasattr(data, "_parameters"): |
|
data = getattr(data, "_parameters") |
|
|
|
emb = next(iter(data.values())) |
|
if type(emb) != torch.Tensor: |
|
raise ValueError(f"weight file does not contains Tensor / 重みファイルのデータがTensorではありません: {file}") |
|
|
|
if len(emb.size()) == 1: |
|
emb = emb.unsqueeze(0) |
|
|
|
return [emb] |
|
|
|
def train(self, args): |
|
if args.output_name is None: |
|
args.output_name = args.token_string |
|
use_template = args.use_object_template or args.use_style_template |
|
|
|
train_util.verify_training_args(args) |
|
train_util.prepare_dataset_args(args, True) |
|
setup_logging(args, reset=True) |
|
|
|
cache_latents = args.cache_latents |
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
tokenizer_or_list = self.load_tokenizer(args) |
|
tokenizers = tokenizer_or_list if isinstance(tokenizer_or_list, list) else [tokenizer_or_list] |
|
|
|
|
|
logger.info("prepare accelerator") |
|
accelerator = train_util.prepare_accelerator(args) |
|
|
|
|
|
weight_dtype, save_dtype = train_util.prepare_dtype(args) |
|
vae_dtype = torch.float32 if args.no_half_vae else weight_dtype |
|
|
|
|
|
model_version, text_encoder_or_list, vae, unet = self.load_target_model(args, weight_dtype, accelerator) |
|
text_encoders = [text_encoder_or_list] if not isinstance(text_encoder_or_list, list) else text_encoder_or_list |
|
|
|
if len(text_encoders) > 1 and args.gradient_accumulation_steps > 1: |
|
accelerator.print( |
|
"accelerate doesn't seem to support gradient_accumulation_steps for multiple models (text encoders) / " |
|
+ "accelerateでは複数のモデル(テキストエンコーダー)のgradient_accumulation_stepsはサポートされていないようです" |
|
) |
|
|
|
|
|
init_token_ids_list = [] |
|
if args.init_word is not None: |
|
for i, tokenizer in enumerate(tokenizers): |
|
init_token_ids = tokenizer.encode(args.init_word, add_special_tokens=False) |
|
if len(init_token_ids) > 1 and len(init_token_ids) != args.num_vectors_per_token: |
|
accelerator.print( |
|
f"token length for init words is not same to num_vectors_per_token, init words is repeated or truncated / " |
|
+ f"初期化単語のトークン長がnum_vectors_per_tokenと合わないため、繰り返しまたは切り捨てが発生します: tokenizer {i+1}, length {len(init_token_ids)}" |
|
) |
|
init_token_ids_list.append(init_token_ids) |
|
else: |
|
init_token_ids_list = [None] * len(tokenizers) |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.assert_token_string(args.token_string, tokenizers) |
|
|
|
token_strings = [args.token_string] + [f"{args.token_string}{i+1}" for i in range(args.num_vectors_per_token - 1)] |
|
token_ids_list = [] |
|
token_embeds_list = [] |
|
for i, (tokenizer, text_encoder, init_token_ids) in enumerate(zip(tokenizers, text_encoders, init_token_ids_list)): |
|
num_added_tokens = tokenizer.add_tokens(token_strings) |
|
assert ( |
|
num_added_tokens == args.num_vectors_per_token |
|
), f"tokenizer has same word to token string. please use another one / 指定したargs.token_stringは既に存在します。別の単語を使ってください: tokenizer {i+1}, {args.token_string}" |
|
|
|
token_ids = tokenizer.convert_tokens_to_ids(token_strings) |
|
accelerator.print(f"tokens are added for tokenizer {i+1}: {token_ids}") |
|
assert ( |
|
min(token_ids) == token_ids[0] and token_ids[-1] == token_ids[0] + len(token_ids) - 1 |
|
), f"token ids is not ordered : tokenizer {i+1}, {token_ids}" |
|
assert ( |
|
len(tokenizer) - 1 == token_ids[-1] |
|
), f"token ids is not end of tokenize: tokenizer {i+1}, {token_ids}, {len(tokenizer)}" |
|
token_ids_list.append(token_ids) |
|
|
|
|
|
text_encoder.resize_token_embeddings(len(tokenizer)) |
|
|
|
|
|
token_embeds = text_encoder.get_input_embeddings().weight.data |
|
if init_token_ids is not None: |
|
for i, token_id in enumerate(token_ids): |
|
token_embeds[token_id] = token_embeds[init_token_ids[i % len(init_token_ids)]] |
|
|
|
token_embeds_list.append(token_embeds) |
|
|
|
|
|
if args.weights is not None: |
|
embeddings_list = self.load_weights(args.weights) |
|
assert len(token_ids) == len( |
|
embeddings_list[0] |
|
), f"num_vectors_per_token is mismatch for weights / 指定した重みとnum_vectors_per_tokenの値が異なります: {len(embeddings)}" |
|
|
|
for token_ids, embeddings, token_embeds in zip(token_ids_list, embeddings_list, token_embeds_list): |
|
for token_id, embedding in zip(token_ids, embeddings): |
|
token_embeds[token_id] = embedding |
|
|
|
accelerator.print(f"weighs loaded") |
|
|
|
accelerator.print(f"create embeddings for {args.num_vectors_per_token} tokens, for {args.token_string}") |
|
|
|
|
|
if args.dataset_class is None: |
|
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, args.masked_loss, False)) |
|
if args.dataset_config is not None: |
|
accelerator.print(f"Load dataset config from {args.dataset_config}") |
|
user_config = config_util.load_user_config(args.dataset_config) |
|
ignored = ["train_data_dir", "reg_data_dir", "in_json"] |
|
if any(getattr(args, attr) is not None for attr in ignored): |
|
accelerator.print( |
|
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format( |
|
", ".join(ignored) |
|
) |
|
) |
|
else: |
|
use_dreambooth_method = args.in_json is None |
|
if use_dreambooth_method: |
|
accelerator.print("Use DreamBooth method.") |
|
user_config = { |
|
"datasets": [ |
|
{ |
|
"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs( |
|
args.train_data_dir, args.reg_data_dir |
|
) |
|
} |
|
] |
|
} |
|
else: |
|
logger.info("Train with captions.") |
|
user_config = { |
|
"datasets": [ |
|
{ |
|
"subsets": [ |
|
{ |
|
"image_dir": args.train_data_dir, |
|
"metadata_file": args.in_json, |
|
} |
|
] |
|
} |
|
] |
|
} |
|
|
|
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer_or_list) |
|
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group) |
|
else: |
|
train_dataset_group = train_util.load_arbitrary_dataset(args, tokenizer_or_list) |
|
|
|
self.assert_extra_args(args, train_dataset_group) |
|
|
|
current_epoch = Value("i", 0) |
|
current_step = Value("i", 0) |
|
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None |
|
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator) |
|
|
|
|
|
if use_template: |
|
accelerator.print(f"use template for training captions. is object: {args.use_object_template}") |
|
templates = imagenet_templates_small if args.use_object_template else imagenet_style_templates_small |
|
replace_to = " ".join(token_strings) |
|
captions = [] |
|
for tmpl in templates: |
|
captions.append(tmpl.format(replace_to)) |
|
train_dataset_group.add_replacement("", captions) |
|
|
|
|
|
if args.num_vectors_per_token > 1: |
|
prompt_replacement = (args.token_string, replace_to) |
|
else: |
|
prompt_replacement = None |
|
else: |
|
|
|
if args.num_vectors_per_token > 1: |
|
replace_to = " ".join(token_strings) |
|
train_dataset_group.add_replacement(args.token_string, replace_to) |
|
prompt_replacement = (args.token_string, replace_to) |
|
else: |
|
prompt_replacement = None |
|
|
|
if args.debug_dataset: |
|
train_util.debug_dataset(train_dataset_group, show_input_ids=True) |
|
return |
|
if len(train_dataset_group) == 0: |
|
accelerator.print("No data found. Please verify arguments / 画像がありません。引数指定を確認してください") |
|
return |
|
|
|
if cache_latents: |
|
assert ( |
|
train_dataset_group.is_latent_cacheable() |
|
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません" |
|
|
|
|
|
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa) |
|
if torch.__version__ >= "2.0.0": |
|
vae.set_use_memory_efficient_attention_xformers(args.xformers) |
|
|
|
|
|
if cache_latents: |
|
vae.to(accelerator.device, dtype=vae_dtype) |
|
vae.requires_grad_(False) |
|
vae.eval() |
|
with torch.no_grad(): |
|
train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process) |
|
vae.to("cpu") |
|
clean_memory_on_device(accelerator.device) |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
if args.gradient_checkpointing: |
|
unet.enable_gradient_checkpointing() |
|
for text_encoder in text_encoders: |
|
text_encoder.gradient_checkpointing_enable() |
|
|
|
|
|
accelerator.print("prepare optimizer, data loader etc.") |
|
trainable_params = [] |
|
for text_encoder in text_encoders: |
|
trainable_params += text_encoder.get_input_embeddings().parameters() |
|
_, _, optimizer = train_util.get_optimizer(args, trainable_params) |
|
|
|
|
|
|
|
n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) |
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset_group, |
|
batch_size=1, |
|
shuffle=True, |
|
collate_fn=collator, |
|
num_workers=n_workers, |
|
persistent_workers=args.persistent_data_loader_workers, |
|
) |
|
|
|
|
|
if args.max_train_epochs is not None: |
|
args.max_train_steps = args.max_train_epochs * math.ceil( |
|
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps |
|
) |
|
accelerator.print( |
|
f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}" |
|
) |
|
|
|
|
|
train_dataset_group.set_max_train_steps(args.max_train_steps) |
|
|
|
|
|
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes) |
|
|
|
|
|
if len(text_encoders) == 1: |
|
text_encoder_or_list, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
text_encoder_or_list, optimizer, train_dataloader, lr_scheduler |
|
) |
|
|
|
elif len(text_encoders) == 2: |
|
text_encoder1, text_encoder2, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
text_encoders[0], text_encoders[1], optimizer, train_dataloader, lr_scheduler |
|
) |
|
|
|
text_encoder_or_list = text_encoders = [text_encoder1, text_encoder2] |
|
|
|
else: |
|
raise NotImplementedError() |
|
|
|
index_no_updates_list = [] |
|
orig_embeds_params_list = [] |
|
for tokenizer, token_ids, text_encoder in zip(tokenizers, token_ids_list, text_encoders): |
|
index_no_updates = torch.arange(len(tokenizer)) < token_ids[0] |
|
index_no_updates_list.append(index_no_updates) |
|
|
|
|
|
orig_embeds_params = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight.data.detach().clone() |
|
orig_embeds_params_list.append(orig_embeds_params) |
|
|
|
|
|
text_encoder.requires_grad_(True) |
|
unwrapped_text_encoder = accelerator.unwrap_model(text_encoder) |
|
unwrapped_text_encoder.text_model.encoder.requires_grad_(False) |
|
unwrapped_text_encoder.text_model.final_layer_norm.requires_grad_(False) |
|
unwrapped_text_encoder.text_model.embeddings.position_embedding.requires_grad_(False) |
|
|
|
|
|
unet.requires_grad_(False) |
|
unet.to(accelerator.device, dtype=weight_dtype) |
|
if args.gradient_checkpointing: |
|
|
|
unet.train() |
|
else: |
|
unet.eval() |
|
|
|
if not cache_latents: |
|
vae.requires_grad_(False) |
|
vae.eval() |
|
vae.to(accelerator.device, dtype=vae_dtype) |
|
|
|
|
|
if args.full_fp16: |
|
train_util.patch_accelerator_for_fp16_training(accelerator) |
|
for text_encoder in text_encoders: |
|
text_encoder.to(weight_dtype) |
|
if args.full_bf16: |
|
for text_encoder in text_encoders: |
|
text_encoder.to(weight_dtype) |
|
|
|
|
|
train_util.resume_from_local_or_hf_if_specified(accelerator, args) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0): |
|
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1 |
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
accelerator.print("running training / 学習開始") |
|
accelerator.print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}") |
|
accelerator.print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}") |
|
accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") |
|
accelerator.print(f" num epochs / epoch数: {num_train_epochs}") |
|
accelerator.print(f" batch size per device / バッチサイズ: {args.train_batch_size}") |
|
accelerator.print( |
|
f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}" |
|
) |
|
accelerator.print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") |
|
accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") |
|
|
|
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps") |
|
global_step = 0 |
|
|
|
noise_scheduler = DDPMScheduler( |
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False |
|
) |
|
prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device) |
|
if args.zero_terminal_snr: |
|
custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler) |
|
|
|
if accelerator.is_main_process: |
|
init_kwargs = {} |
|
if args.wandb_run_name: |
|
init_kwargs["wandb"] = {"name": args.wandb_run_name} |
|
if args.log_tracker_config is not None: |
|
init_kwargs = toml.load(args.log_tracker_config) |
|
accelerator.init_trackers( |
|
"textual_inversion" if args.log_tracker_name is None else args.log_tracker_name, init_kwargs=init_kwargs |
|
) |
|
|
|
|
|
def save_model(ckpt_name, embs_list, steps, epoch_no, force_sync_upload=False): |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
ckpt_file = os.path.join(args.output_dir, ckpt_name) |
|
|
|
accelerator.print(f"\nsaving checkpoint: {ckpt_file}") |
|
|
|
sai_metadata = train_util.get_sai_model_spec(None, args, self.is_sdxl, False, True) |
|
|
|
self.save_weights(ckpt_file, embs_list, save_dtype, sai_metadata) |
|
if args.huggingface_repo_id is not None: |
|
huggingface_util.upload(args, ckpt_file, "/" + ckpt_name, force_sync_upload=force_sync_upload) |
|
|
|
def remove_model(old_ckpt_name): |
|
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name) |
|
if os.path.exists(old_ckpt_file): |
|
accelerator.print(f"removing old checkpoint: {old_ckpt_file}") |
|
os.remove(old_ckpt_file) |
|
|
|
|
|
self.sample_images( |
|
accelerator, |
|
args, |
|
0, |
|
global_step, |
|
accelerator.device, |
|
vae, |
|
tokenizer_or_list, |
|
text_encoder_or_list, |
|
unet, |
|
prompt_replacement, |
|
) |
|
|
|
|
|
for epoch in range(num_train_epochs): |
|
accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}") |
|
current_epoch.value = epoch + 1 |
|
|
|
for text_encoder in text_encoders: |
|
text_encoder.train() |
|
|
|
loss_total = 0 |
|
|
|
for step, batch in enumerate(train_dataloader): |
|
current_step.value = global_step |
|
with accelerator.accumulate(text_encoders[0]): |
|
with torch.no_grad(): |
|
if "latents" in batch and batch["latents"] is not None: |
|
latents = batch["latents"].to(accelerator.device).to(dtype=weight_dtype) |
|
else: |
|
|
|
latents = vae.encode(batch["images"].to(dtype=vae_dtype)).latent_dist.sample().to(dtype=weight_dtype) |
|
latents = latents * self.vae_scale_factor |
|
|
|
|
|
text_encoder_conds = self.get_text_cond(args, accelerator, batch, tokenizers, text_encoders, weight_dtype) |
|
|
|
|
|
|
|
noise, noisy_latents, timesteps, huber_c = train_util.get_noise_noisy_latents_and_timesteps( |
|
args, noise_scheduler, latents |
|
) |
|
|
|
|
|
with accelerator.autocast(): |
|
noise_pred = self.call_unet( |
|
args, accelerator, unet, noisy_latents, timesteps, text_encoder_conds, batch, weight_dtype |
|
) |
|
|
|
if args.v_parameterization: |
|
|
|
target = noise_scheduler.get_velocity(latents, noise, timesteps) |
|
else: |
|
target = noise |
|
|
|
loss = train_util.conditional_loss(noise_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c) |
|
if args.masked_loss: |
|
loss = apply_masked_loss(loss, batch) |
|
loss = loss.mean([1, 2, 3]) |
|
|
|
loss_weights = batch["loss_weights"] |
|
loss = loss * loss_weights |
|
|
|
if args.min_snr_gamma: |
|
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma, args.v_parameterization) |
|
if args.scale_v_pred_loss_like_noise_pred: |
|
loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler) |
|
if args.v_pred_like_loss: |
|
loss = add_v_prediction_like_loss(loss, timesteps, noise_scheduler, args.v_pred_like_loss) |
|
if args.debiased_estimation_loss: |
|
loss = apply_debiased_estimation(loss, timesteps, noise_scheduler) |
|
|
|
loss = loss.mean() |
|
|
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients and args.max_grad_norm != 0.0: |
|
params_to_clip = accelerator.unwrap_model(text_encoder).get_input_embeddings().parameters() |
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) |
|
|
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad(set_to_none=True) |
|
|
|
|
|
with torch.no_grad(): |
|
for text_encoder, orig_embeds_params, index_no_updates in zip( |
|
text_encoders, orig_embeds_params_list, index_no_updates_list |
|
): |
|
|
|
input_embeddings_weight = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight |
|
input_embeddings_weight[index_no_updates] = orig_embeds_params.to(input_embeddings_weight.dtype)[ |
|
index_no_updates |
|
] |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
self.sample_images( |
|
accelerator, |
|
args, |
|
None, |
|
global_step, |
|
accelerator.device, |
|
vae, |
|
tokenizer_or_list, |
|
text_encoder_or_list, |
|
unet, |
|
prompt_replacement, |
|
) |
|
|
|
|
|
if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0: |
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
updated_embs_list = [] |
|
for text_encoder, token_ids in zip(text_encoders, token_ids_list): |
|
updated_embs = ( |
|
accelerator.unwrap_model(text_encoder) |
|
.get_input_embeddings() |
|
.weight[token_ids] |
|
.data.detach() |
|
.clone() |
|
) |
|
updated_embs_list.append(updated_embs) |
|
|
|
ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, global_step) |
|
save_model(ckpt_name, updated_embs_list, global_step, epoch) |
|
|
|
if args.save_state: |
|
train_util.save_and_remove_state_stepwise(args, accelerator, global_step) |
|
|
|
remove_step_no = train_util.get_remove_step_no(args, global_step) |
|
if remove_step_no is not None: |
|
remove_ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, remove_step_no) |
|
remove_model(remove_ckpt_name) |
|
|
|
current_loss = loss.detach().item() |
|
if args.logging_dir is not None: |
|
logs = {"loss": current_loss, "lr": float(lr_scheduler.get_last_lr()[0])} |
|
if ( |
|
args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower() |
|
): |
|
logs["lr/d*lr"] = ( |
|
lr_scheduler.optimizers[0].param_groups[0]["d"] * lr_scheduler.optimizers[0].param_groups[0]["lr"] |
|
) |
|
accelerator.log(logs, step=global_step) |
|
|
|
loss_total += current_loss |
|
avr_loss = loss_total / (step + 1) |
|
logs = {"loss": avr_loss} |
|
progress_bar.set_postfix(**logs) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
if args.logging_dir is not None: |
|
logs = {"loss/epoch": loss_total / len(train_dataloader)} |
|
accelerator.log(logs, step=epoch + 1) |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
updated_embs_list = [] |
|
for text_encoder, token_ids in zip(text_encoders, token_ids_list): |
|
updated_embs = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[token_ids].data.detach().clone() |
|
updated_embs_list.append(updated_embs) |
|
|
|
if args.save_every_n_epochs is not None: |
|
saving = (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs |
|
if accelerator.is_main_process and saving: |
|
ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, epoch + 1) |
|
save_model(ckpt_name, updated_embs_list, epoch + 1, global_step) |
|
|
|
remove_epoch_no = train_util.get_remove_epoch_no(args, epoch + 1) |
|
if remove_epoch_no is not None: |
|
remove_ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, remove_epoch_no) |
|
remove_model(remove_ckpt_name) |
|
|
|
if args.save_state: |
|
train_util.save_and_remove_state_on_epoch_end(args, accelerator, epoch + 1) |
|
|
|
self.sample_images( |
|
accelerator, |
|
args, |
|
epoch + 1, |
|
global_step, |
|
accelerator.device, |
|
vae, |
|
tokenizer_or_list, |
|
text_encoder_or_list, |
|
unet, |
|
prompt_replacement, |
|
) |
|
|
|
|
|
|
|
is_main_process = accelerator.is_main_process |
|
if is_main_process: |
|
text_encoder = accelerator.unwrap_model(text_encoder) |
|
updated_embs = text_encoder.get_input_embeddings().weight[token_ids].data.detach().clone() |
|
|
|
accelerator.end_training() |
|
|
|
if is_main_process and (args.save_state or args.save_state_on_train_end): |
|
train_util.save_state_on_train_end(args, accelerator) |
|
|
|
if is_main_process: |
|
ckpt_name = train_util.get_last_ckpt_name(args, "." + args.save_model_as) |
|
save_model(ckpt_name, updated_embs_list, global_step, num_train_epochs, force_sync_upload=True) |
|
|
|
logger.info("model saved.") |
|
|
|
|
|
def setup_parser() -> argparse.ArgumentParser: |
|
parser = argparse.ArgumentParser() |
|
|
|
add_logging_arguments(parser) |
|
train_util.add_sd_models_arguments(parser) |
|
train_util.add_dataset_arguments(parser, True, True, False) |
|
train_util.add_training_arguments(parser, True) |
|
train_util.add_masked_loss_arguments(parser) |
|
deepspeed_utils.add_deepspeed_arguments(parser) |
|
train_util.add_optimizer_arguments(parser) |
|
config_util.add_config_arguments(parser) |
|
custom_train_functions.add_custom_train_arguments(parser, False) |
|
|
|
parser.add_argument( |
|
"--save_model_as", |
|
type=str, |
|
default="pt", |
|
choices=[None, "ckpt", "pt", "safetensors"], |
|
help="format to save the model (default is .pt) / モデル保存時の形式(デフォルトはpt)", |
|
) |
|
|
|
parser.add_argument( |
|
"--weights", type=str, default=None, help="embedding weights to initialize / 学習するネットワークの初期重み" |
|
) |
|
parser.add_argument( |
|
"--num_vectors_per_token", type=int, default=1, help="number of vectors per token / トークンに割り当てるembeddingsの要素数" |
|
) |
|
parser.add_argument( |
|
"--token_string", |
|
type=str, |
|
default=None, |
|
help="token string used in training, must not exist in tokenizer / 学習時に使用されるトークン文字列、tokenizerに存在しない文字であること", |
|
) |
|
parser.add_argument( |
|
"--init_word", type=str, default=None, help="words to initialize vector / ベクトルを初期化に使用する単語、複数可" |
|
) |
|
parser.add_argument( |
|
"--use_object_template", |
|
action="store_true", |
|
help="ignore caption and use default templates for object / キャプションは使わずデフォルトの物体用テンプレートで学習する", |
|
) |
|
parser.add_argument( |
|
"--use_style_template", |
|
action="store_true", |
|
help="ignore caption and use default templates for stype / キャプションは使わずデフォルトのスタイル用テンプレートで学習する", |
|
) |
|
parser.add_argument( |
|
"--no_half_vae", |
|
action="store_true", |
|
help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う", |
|
) |
|
|
|
return parser |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = setup_parser() |
|
|
|
args = parser.parse_args() |
|
train_util.verify_command_line_training_args(args) |
|
args = train_util.read_config_from_file(args, parser) |
|
|
|
trainer = TextualInversionTrainer() |
|
trainer.train(args) |
|
|