ACCC1380's picture
Upload lora-scripts/sd-scripts/library/sdxl_train_util.py with huggingface_hub
b2eaa78 verified
raw
history blame
14 kB
import argparse
import math
import os
from typing import Optional
import torch
from library.device_utils import init_ipex, clean_memory_on_device
init_ipex()
from accelerate import init_empty_weights
from tqdm import tqdm
from transformers import CLIPTokenizer
from library import model_util, sdxl_model_util, train_util, sdxl_original_unet
from library.sdxl_lpw_stable_diffusion import SdxlStableDiffusionLongPromptWeightingPipeline
from .utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
TOKENIZER1_PATH = "openai/clip-vit-large-patch14"
TOKENIZER2_PATH = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
# DEFAULT_NOISE_OFFSET = 0.0357
def load_target_model(args, accelerator, model_version: str, weight_dtype):
model_dtype = match_mixed_precision(args, weight_dtype) # prepare fp16/bf16
for pi in range(accelerator.state.num_processes):
if pi == accelerator.state.local_process_index:
logger.info(f"loading model for process {accelerator.state.local_process_index}/{accelerator.state.num_processes}")
(
load_stable_diffusion_format,
text_encoder1,
text_encoder2,
vae,
unet,
logit_scale,
ckpt_info,
) = _load_target_model(
args.pretrained_model_name_or_path,
args.vae,
model_version,
weight_dtype,
accelerator.device if args.lowram else "cpu",
model_dtype,
)
# work on low-ram device
if args.lowram:
text_encoder1.to(accelerator.device)
text_encoder2.to(accelerator.device)
unet.to(accelerator.device)
vae.to(accelerator.device)
clean_memory_on_device(accelerator.device)
accelerator.wait_for_everyone()
return load_stable_diffusion_format, text_encoder1, text_encoder2, vae, unet, logit_scale, ckpt_info
def _load_target_model(
name_or_path: str, vae_path: Optional[str], model_version: str, weight_dtype, device="cpu", model_dtype=None
):
# model_dtype only work with full fp16/bf16
name_or_path = os.readlink(name_or_path) if os.path.islink(name_or_path) else name_or_path
load_stable_diffusion_format = os.path.isfile(name_or_path) # determine SD or Diffusers
if load_stable_diffusion_format:
logger.info(f"load StableDiffusion checkpoint: {name_or_path}")
(
text_encoder1,
text_encoder2,
vae,
unet,
logit_scale,
ckpt_info,
) = sdxl_model_util.load_models_from_sdxl_checkpoint(model_version, name_or_path, device, model_dtype)
else:
# Diffusers model is loaded to CPU
from diffusers import StableDiffusionXLPipeline
variant = "fp16" if weight_dtype == torch.float16 else None
logger.info(f"load Diffusers pretrained models: {name_or_path}, variant={variant}")
try:
try:
pipe = StableDiffusionXLPipeline.from_pretrained(
name_or_path, torch_dtype=model_dtype, variant=variant, tokenizer=None
)
except EnvironmentError as ex:
if variant is not None:
logger.info("try to load fp32 model")
pipe = StableDiffusionXLPipeline.from_pretrained(name_or_path, variant=None, tokenizer=None)
else:
raise ex
except EnvironmentError as ex:
logger.error(
f"model is not found as a file or in Hugging Face, perhaps file name is wrong? / 指定したモデル名のファイル、またはHugging Faceのモデルが見つかりません。ファイル名が誤っているかもしれません: {name_or_path}"
)
raise ex
text_encoder1 = pipe.text_encoder
text_encoder2 = pipe.text_encoder_2
# convert to fp32 for cache text_encoders outputs
if text_encoder1.dtype != torch.float32:
text_encoder1 = text_encoder1.to(dtype=torch.float32)
if text_encoder2.dtype != torch.float32:
text_encoder2 = text_encoder2.to(dtype=torch.float32)
vae = pipe.vae
unet = pipe.unet
del pipe
# Diffusers U-Net to original U-Net
state_dict = sdxl_model_util.convert_diffusers_unet_state_dict_to_sdxl(unet.state_dict())
with init_empty_weights():
unet = sdxl_original_unet.SdxlUNet2DConditionModel() # overwrite unet
sdxl_model_util._load_state_dict_on_device(unet, state_dict, device=device, dtype=model_dtype)
logger.info("U-Net converted to original U-Net")
logit_scale = None
ckpt_info = None
# VAEを読み込む
if vae_path is not None:
vae = model_util.load_vae(vae_path, weight_dtype)
logger.info("additional VAE loaded")
return load_stable_diffusion_format, text_encoder1, text_encoder2, vae, unet, logit_scale, ckpt_info
def load_tokenizers(args: argparse.Namespace):
logger.info("prepare tokenizers")
original_paths = [TOKENIZER1_PATH, TOKENIZER2_PATH]
tokeniers = []
for i, original_path in enumerate(original_paths):
tokenizer: CLIPTokenizer = None
if args.tokenizer_cache_dir:
local_tokenizer_path = os.path.join(args.tokenizer_cache_dir, original_path.replace("/", "_"))
if os.path.exists(local_tokenizer_path):
logger.info(f"load tokenizer from cache: {local_tokenizer_path}")
tokenizer = CLIPTokenizer.from_pretrained(local_tokenizer_path)
if tokenizer is None:
tokenizer = CLIPTokenizer.from_pretrained(original_path)
if args.tokenizer_cache_dir and not os.path.exists(local_tokenizer_path):
logger.info(f"save Tokenizer to cache: {local_tokenizer_path}")
tokenizer.save_pretrained(local_tokenizer_path)
if i == 1:
tokenizer.pad_token_id = 0 # fix pad token id to make same as open clip tokenizer
tokeniers.append(tokenizer)
if hasattr(args, "max_token_length") and args.max_token_length is not None:
logger.info(f"update token length: {args.max_token_length}")
return tokeniers
def match_mixed_precision(args, weight_dtype):
if args.full_fp16:
assert (
weight_dtype == torch.float16
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
return weight_dtype
elif args.full_bf16:
assert (
weight_dtype == torch.bfloat16
), "full_bf16 requires mixed precision='bf16' / full_bf16を使う場合はmixed_precision='bf16'を指定してください。"
return weight_dtype
else:
return None
def timestep_embedding(timesteps, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
device=timesteps.device
)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def get_timestep_embedding(x, outdim):
assert len(x.shape) == 2
b, dims = x.shape[0], x.shape[1]
x = torch.flatten(x)
emb = timestep_embedding(x, outdim)
emb = torch.reshape(emb, (b, dims * outdim))
return emb
def get_size_embeddings(orig_size, crop_size, target_size, device):
emb1 = get_timestep_embedding(orig_size, 256)
emb2 = get_timestep_embedding(crop_size, 256)
emb3 = get_timestep_embedding(target_size, 256)
vector = torch.cat([emb1, emb2, emb3], dim=1).to(device)
return vector
def save_sd_model_on_train_end(
args: argparse.Namespace,
src_path: str,
save_stable_diffusion_format: bool,
use_safetensors: bool,
save_dtype: torch.dtype,
epoch: int,
global_step: int,
text_encoder1,
text_encoder2,
unet,
vae,
logit_scale,
ckpt_info,
):
def sd_saver(ckpt_file, epoch_no, global_step):
sai_metadata = train_util.get_sai_model_spec(None, args, True, False, False, is_stable_diffusion_ckpt=True)
sdxl_model_util.save_stable_diffusion_checkpoint(
ckpt_file,
text_encoder1,
text_encoder2,
unet,
epoch_no,
global_step,
ckpt_info,
vae,
logit_scale,
sai_metadata,
save_dtype,
)
def diffusers_saver(out_dir):
sdxl_model_util.save_diffusers_checkpoint(
out_dir,
text_encoder1,
text_encoder2,
unet,
src_path,
vae,
use_safetensors=use_safetensors,
save_dtype=save_dtype,
)
train_util.save_sd_model_on_train_end_common(
args, save_stable_diffusion_format, use_safetensors, epoch, global_step, sd_saver, diffusers_saver
)
# epochとstepの保存、メタデータにepoch/stepが含まれ引数が同じになるため、統合している
# on_epoch_end: Trueならepoch終了時、Falseならstep経過時
def save_sd_model_on_epoch_end_or_stepwise(
args: argparse.Namespace,
on_epoch_end: bool,
accelerator,
src_path,
save_stable_diffusion_format: bool,
use_safetensors: bool,
save_dtype: torch.dtype,
epoch: int,
num_train_epochs: int,
global_step: int,
text_encoder1,
text_encoder2,
unet,
vae,
logit_scale,
ckpt_info,
):
def sd_saver(ckpt_file, epoch_no, global_step):
sai_metadata = train_util.get_sai_model_spec(None, args, True, False, False, is_stable_diffusion_ckpt=True)
sdxl_model_util.save_stable_diffusion_checkpoint(
ckpt_file,
text_encoder1,
text_encoder2,
unet,
epoch_no,
global_step,
ckpt_info,
vae,
logit_scale,
sai_metadata,
save_dtype,
)
def diffusers_saver(out_dir):
sdxl_model_util.save_diffusers_checkpoint(
out_dir,
text_encoder1,
text_encoder2,
unet,
src_path,
vae,
use_safetensors=use_safetensors,
save_dtype=save_dtype,
)
train_util.save_sd_model_on_epoch_end_or_stepwise_common(
args,
on_epoch_end,
accelerator,
save_stable_diffusion_format,
use_safetensors,
epoch,
num_train_epochs,
global_step,
sd_saver,
diffusers_saver,
)
def add_sdxl_training_arguments(parser: argparse.ArgumentParser):
parser.add_argument(
"--cache_text_encoder_outputs", action="store_true", help="cache text encoder outputs / text encoderの出力をキャッシュする"
)
parser.add_argument(
"--cache_text_encoder_outputs_to_disk",
action="store_true",
help="cache text encoder outputs to disk / text encoderの出力をディスクにキャッシュする",
)
def verify_sdxl_training_args(args: argparse.Namespace, supportTextEncoderCaching: bool = True):
assert not args.v2, "v2 cannot be enabled in SDXL training / SDXL学習ではv2を有効にすることはできません"
if args.v_parameterization:
logger.warning("v_parameterization will be unexpected / SDXL学習ではv_parameterizationは想定外の動作になります")
if args.clip_skip is not None:
logger.warning("clip_skip will be unexpected / SDXL学習ではclip_skipは動作しません")
# if args.multires_noise_iterations:
# logger.info(
# f"Warning: SDXL has been trained with noise_offset={DEFAULT_NOISE_OFFSET}, but noise_offset is disabled due to multires_noise_iterations / SDXLはnoise_offset={DEFAULT_NOISE_OFFSET}で学習されていますが、multires_noise_iterationsが有効になっているためnoise_offsetは無効になります"
# )
# else:
# if args.noise_offset is None:
# args.noise_offset = DEFAULT_NOISE_OFFSET
# elif args.noise_offset != DEFAULT_NOISE_OFFSET:
# logger.info(
# f"Warning: SDXL has been trained with noise_offset={DEFAULT_NOISE_OFFSET} / SDXLはnoise_offset={DEFAULT_NOISE_OFFSET}で学習されています"
# )
# logger.info(f"noise_offset is set to {args.noise_offset} / noise_offsetが{args.noise_offset}に設定されました")
assert (
not hasattr(args, "weighted_captions") or not args.weighted_captions
), "weighted_captions cannot be enabled in SDXL training currently / SDXL学習では今のところweighted_captionsを有効にすることはできません"
if supportTextEncoderCaching:
if args.cache_text_encoder_outputs_to_disk and not args.cache_text_encoder_outputs:
args.cache_text_encoder_outputs = True
logger.warning(
"cache_text_encoder_outputs is enabled because cache_text_encoder_outputs_to_disk is enabled / "
+ "cache_text_encoder_outputs_to_diskが有効になっているためcache_text_encoder_outputsが有効になりました"
)
def sample_images(*args, **kwargs):
return train_util.sample_images_common(SdxlStableDiffusionLongPromptWeightingPipeline, *args, **kwargs)