ACCC1380's picture
Upload lora-scripts/sd-scripts/library/ipex/gradscaler.py with huggingface_hub
51def76 verified
raw
history blame
8.65 kB
from collections import defaultdict
import torch
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
import intel_extension_for_pytorch._C as core # pylint: disable=import-error, unused-import
# pylint: disable=protected-access, missing-function-docstring, line-too-long
device_supports_fp64 = torch.xpu.has_fp64_dtype()
OptState = ipex.cpu.autocast._grad_scaler.OptState
_MultiDeviceReplicator = ipex.cpu.autocast._grad_scaler._MultiDeviceReplicator
_refresh_per_optimizer_state = ipex.cpu.autocast._grad_scaler._refresh_per_optimizer_state
def _unscale_grads_(self, optimizer, inv_scale, found_inf, allow_fp16): # pylint: disable=unused-argument
per_device_inv_scale = _MultiDeviceReplicator(inv_scale)
per_device_found_inf = _MultiDeviceReplicator(found_inf)
# To set up _amp_foreach_non_finite_check_and_unscale_, split grads by device and dtype.
# There could be hundreds of grads, so we'd like to iterate through them just once.
# However, we don't know their devices or dtypes in advance.
# https://stackoverflow.com/questions/5029934/defaultdict-of-defaultdict
# Google says mypy struggles with defaultdicts type annotations.
per_device_and_dtype_grads = defaultdict(lambda: defaultdict(list)) # type: ignore[var-annotated]
# sync grad to master weight
if hasattr(optimizer, "sync_grad"):
optimizer.sync_grad()
with torch.no_grad():
for group in optimizer.param_groups:
for param in group["params"]:
if param.grad is None:
continue
if (not allow_fp16) and param.grad.dtype == torch.float16:
raise ValueError("Attempting to unscale FP16 gradients.")
if param.grad.is_sparse:
# is_coalesced() == False means the sparse grad has values with duplicate indices.
# coalesce() deduplicates indices and adds all values that have the same index.
# For scaled fp16 values, there's a good chance coalescing will cause overflow,
# so we should check the coalesced _values().
if param.grad.dtype is torch.float16:
param.grad = param.grad.coalesce()
to_unscale = param.grad._values()
else:
to_unscale = param.grad
# -: is there a way to split by device and dtype without appending in the inner loop?
to_unscale = to_unscale.to("cpu")
per_device_and_dtype_grads[to_unscale.device][
to_unscale.dtype
].append(to_unscale)
for _, per_dtype_grads in per_device_and_dtype_grads.items():
for grads in per_dtype_grads.values():
core._amp_foreach_non_finite_check_and_unscale_(
grads,
per_device_found_inf.get("cpu"),
per_device_inv_scale.get("cpu"),
)
return per_device_found_inf._per_device_tensors
def unscale_(self, optimizer):
"""
Divides ("unscales") the optimizer's gradient tensors by the scale factor.
:meth:`unscale_` is optional, serving cases where you need to
:ref:`modify or inspect gradients<working-with-unscaled-gradients>`
between the backward pass(es) and :meth:`step`.
If :meth:`unscale_` is not called explicitly, gradients will be unscaled automatically during :meth:`step`.
Simple example, using :meth:`unscale_` to enable clipping of unscaled gradients::
...
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
scaler.step(optimizer)
scaler.update()
Args:
optimizer (torch.optim.Optimizer): Optimizer that owns the gradients to be unscaled.
.. warning::
:meth:`unscale_` should only be called once per optimizer per :meth:`step` call,
and only after all gradients for that optimizer's assigned parameters have been accumulated.
Calling :meth:`unscale_` twice for a given optimizer between each :meth:`step` triggers a RuntimeError.
.. warning::
:meth:`unscale_` may unscale sparse gradients out of place, replacing the ``.grad`` attribute.
"""
if not self._enabled:
return
self._check_scale_growth_tracker("unscale_")
optimizer_state = self._per_optimizer_states[id(optimizer)]
if optimizer_state["stage"] is OptState.UNSCALED: # pylint: disable=no-else-raise
raise RuntimeError(
"unscale_() has already been called on this optimizer since the last update()."
)
elif optimizer_state["stage"] is OptState.STEPPED:
raise RuntimeError("unscale_() is being called after step().")
# FP32 division can be imprecise for certain compile options, so we carry out the reciprocal in FP64.
assert self._scale is not None
if device_supports_fp64:
inv_scale = self._scale.double().reciprocal().float()
else:
inv_scale = self._scale.to("cpu").double().reciprocal().float().to(self._scale.device)
found_inf = torch.full(
(1,), 0.0, dtype=torch.float32, device=self._scale.device
)
optimizer_state["found_inf_per_device"] = self._unscale_grads_(
optimizer, inv_scale, found_inf, False
)
optimizer_state["stage"] = OptState.UNSCALED
def update(self, new_scale=None):
"""
Updates the scale factor.
If any optimizer steps were skipped the scale is multiplied by ``backoff_factor``
to reduce it. If ``growth_interval`` unskipped iterations occurred consecutively,
the scale is multiplied by ``growth_factor`` to increase it.
Passing ``new_scale`` sets the new scale value manually. (``new_scale`` is not
used directly, it's used to fill GradScaler's internal scale tensor. So if
``new_scale`` was a tensor, later in-place changes to that tensor will not further
affect the scale GradScaler uses internally.)
Args:
new_scale (float or :class:`torch.FloatTensor`, optional, default=None): New scale factor.
.. warning::
:meth:`update` should only be called at the end of the iteration, after ``scaler.step(optimizer)`` has
been invoked for all optimizers used this iteration.
"""
if not self._enabled:
return
_scale, _growth_tracker = self._check_scale_growth_tracker("update")
if new_scale is not None:
# Accept a new user-defined scale.
if isinstance(new_scale, float):
self._scale.fill_(new_scale) # type: ignore[union-attr]
else:
reason = "new_scale should be a float or a 1-element torch.FloatTensor with requires_grad=False."
assert isinstance(new_scale, torch.FloatTensor), reason # type: ignore[attr-defined]
assert new_scale.numel() == 1, reason
assert new_scale.requires_grad is False, reason
self._scale.copy_(new_scale) # type: ignore[union-attr]
else:
# Consume shared inf/nan data collected from optimizers to update the scale.
# If all found_inf tensors are on the same device as self._scale, this operation is asynchronous.
found_infs = [
found_inf.to(device="cpu", non_blocking=True)
for state in self._per_optimizer_states.values()
for found_inf in state["found_inf_per_device"].values()
]
assert len(found_infs) > 0, "No inf checks were recorded prior to update."
found_inf_combined = found_infs[0]
if len(found_infs) > 1:
for i in range(1, len(found_infs)):
found_inf_combined += found_infs[i]
to_device = _scale.device
_scale = _scale.to("cpu")
_growth_tracker = _growth_tracker.to("cpu")
core._amp_update_scale_(
_scale,
_growth_tracker,
found_inf_combined,
self._growth_factor,
self._backoff_factor,
self._growth_interval,
)
_scale = _scale.to(to_device)
_growth_tracker = _growth_tracker.to(to_device)
# To prepare for next iteration, clear the data collected from optimizers this iteration.
self._per_optimizer_states = defaultdict(_refresh_per_optimizer_state)
def gradscaler_init():
torch.xpu.amp.GradScaler = ipex.cpu.autocast._grad_scaler.GradScaler
torch.xpu.amp.GradScaler._unscale_grads_ = _unscale_grads_
torch.xpu.amp.GradScaler.unscale_ = unscale_
torch.xpu.amp.GradScaler.update = update
return torch.xpu.amp.GradScaler