|
import argparse |
|
import os |
|
|
|
import regex |
|
|
|
import torch |
|
from library.device_utils import init_ipex |
|
init_ipex() |
|
|
|
from library import sdxl_model_util, sdxl_train_util, train_util |
|
|
|
import train_textual_inversion |
|
|
|
|
|
class SdxlTextualInversionTrainer(train_textual_inversion.TextualInversionTrainer): |
|
def __init__(self): |
|
super().__init__() |
|
self.vae_scale_factor = sdxl_model_util.VAE_SCALE_FACTOR |
|
self.is_sdxl = True |
|
|
|
def assert_extra_args(self, args, train_dataset_group): |
|
super().assert_extra_args(args, train_dataset_group) |
|
sdxl_train_util.verify_sdxl_training_args(args, supportTextEncoderCaching=False) |
|
|
|
train_dataset_group.verify_bucket_reso_steps(32) |
|
|
|
def load_target_model(self, args, weight_dtype, accelerator): |
|
( |
|
load_stable_diffusion_format, |
|
text_encoder1, |
|
text_encoder2, |
|
vae, |
|
unet, |
|
logit_scale, |
|
ckpt_info, |
|
) = sdxl_train_util.load_target_model(args, accelerator, sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, weight_dtype) |
|
|
|
self.load_stable_diffusion_format = load_stable_diffusion_format |
|
self.logit_scale = logit_scale |
|
self.ckpt_info = ckpt_info |
|
|
|
return sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, [text_encoder1, text_encoder2], vae, unet |
|
|
|
def load_tokenizer(self, args): |
|
tokenizer = sdxl_train_util.load_tokenizers(args) |
|
return tokenizer |
|
|
|
def get_text_cond(self, args, accelerator, batch, tokenizers, text_encoders, weight_dtype): |
|
input_ids1 = batch["input_ids"] |
|
input_ids2 = batch["input_ids2"] |
|
with torch.enable_grad(): |
|
input_ids1 = input_ids1.to(accelerator.device) |
|
input_ids2 = input_ids2.to(accelerator.device) |
|
encoder_hidden_states1, encoder_hidden_states2, pool2 = train_util.get_hidden_states_sdxl( |
|
args.max_token_length, |
|
input_ids1, |
|
input_ids2, |
|
tokenizers[0], |
|
tokenizers[1], |
|
text_encoders[0], |
|
text_encoders[1], |
|
None if not args.full_fp16 else weight_dtype, |
|
accelerator=accelerator, |
|
) |
|
return encoder_hidden_states1, encoder_hidden_states2, pool2 |
|
|
|
def call_unet(self, args, accelerator, unet, noisy_latents, timesteps, text_conds, batch, weight_dtype): |
|
noisy_latents = noisy_latents.to(weight_dtype) |
|
|
|
|
|
orig_size = batch["original_sizes_hw"] |
|
crop_size = batch["crop_top_lefts"] |
|
target_size = batch["target_sizes_hw"] |
|
embs = sdxl_train_util.get_size_embeddings(orig_size, crop_size, target_size, accelerator.device).to(weight_dtype) |
|
|
|
|
|
encoder_hidden_states1, encoder_hidden_states2, pool2 = text_conds |
|
vector_embedding = torch.cat([pool2, embs], dim=1).to(weight_dtype) |
|
text_embedding = torch.cat([encoder_hidden_states1, encoder_hidden_states2], dim=2).to(weight_dtype) |
|
|
|
noise_pred = unet(noisy_latents, timesteps, text_embedding, vector_embedding) |
|
return noise_pred |
|
|
|
def sample_images(self, accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet, prompt_replacement): |
|
sdxl_train_util.sample_images( |
|
accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet, prompt_replacement |
|
) |
|
|
|
def save_weights(self, file, updated_embs, save_dtype, metadata): |
|
state_dict = {"clip_l": updated_embs[0], "clip_g": updated_embs[1]} |
|
|
|
if save_dtype is not None: |
|
for key in list(state_dict.keys()): |
|
v = state_dict[key] |
|
v = v.detach().clone().to("cpu").to(save_dtype) |
|
state_dict[key] = v |
|
|
|
if os.path.splitext(file)[1] == ".safetensors": |
|
from safetensors.torch import save_file |
|
|
|
save_file(state_dict, file, metadata) |
|
else: |
|
torch.save(state_dict, file) |
|
|
|
def load_weights(self, file): |
|
if os.path.splitext(file)[1] == ".safetensors": |
|
from safetensors.torch import load_file |
|
|
|
data = load_file(file) |
|
else: |
|
data = torch.load(file, map_location="cpu") |
|
|
|
emb_l = data.get("clip_l", None) |
|
emb_g = data.get("clip_g", None) |
|
|
|
assert ( |
|
emb_l is not None or emb_g is not None |
|
), f"weight file does not contains weights for text encoder 1 or 2 / 重みファイルにテキストエンコーダー1または2の重みが含まれていません: {file}" |
|
|
|
return [emb_l, emb_g] |
|
|
|
|
|
def setup_parser() -> argparse.ArgumentParser: |
|
parser = train_textual_inversion.setup_parser() |
|
|
|
|
|
return parser |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = setup_parser() |
|
|
|
args = parser.parse_args() |
|
train_util.verify_command_line_training_args(args) |
|
args = train_util.read_config_from_file(args, parser) |
|
|
|
trainer = SdxlTextualInversionTrainer() |
|
trainer.train(args) |
|
|