ACCC1380's picture
Upload lora-scripts/sd-scripts/sdxl_train.py with huggingface_hub
19768bc verified
raw
history blame
36.8 kB
# training with captions
import argparse
import math
import os
from multiprocessing import Value
from typing import List
import toml
from tqdm import tqdm
import torch
from library.device_utils import init_ipex, clean_memory_on_device
init_ipex()
from accelerate.utils import set_seed
from diffusers import DDPMScheduler
from library import deepspeed_utils, sdxl_model_util
import library.train_util as train_util
from library.utils import setup_logging, add_logging_arguments
setup_logging()
import logging
logger = logging.getLogger(__name__)
import library.config_util as config_util
import library.sdxl_train_util as sdxl_train_util
from library.config_util import (
ConfigSanitizer,
BlueprintGenerator,
)
import library.custom_train_functions as custom_train_functions
from library.custom_train_functions import (
apply_snr_weight,
prepare_scheduler_for_custom_training,
scale_v_prediction_loss_like_noise_prediction,
add_v_prediction_like_loss,
apply_debiased_estimation,
apply_masked_loss,
)
from library.sdxl_original_unet import SdxlUNet2DConditionModel
UNET_NUM_BLOCKS_FOR_BLOCK_LR = 23
def get_block_params_to_optimize(unet: SdxlUNet2DConditionModel, block_lrs: List[float]) -> List[dict]:
block_params = [[] for _ in range(len(block_lrs))]
for i, (name, param) in enumerate(unet.named_parameters()):
if name.startswith("time_embed.") or name.startswith("label_emb."):
block_index = 0 # 0
elif name.startswith("input_blocks."): # 1-9
block_index = 1 + int(name.split(".")[1])
elif name.startswith("middle_block."): # 10-12
block_index = 10 + int(name.split(".")[1])
elif name.startswith("output_blocks."): # 13-21
block_index = 13 + int(name.split(".")[1])
elif name.startswith("out."): # 22
block_index = 22
else:
raise ValueError(f"unexpected parameter name: {name}")
block_params[block_index].append(param)
params_to_optimize = []
for i, params in enumerate(block_params):
if block_lrs[i] == 0: # 0のときは学習しない do not optimize when lr is 0
continue
params_to_optimize.append({"params": params, "lr": block_lrs[i]})
return params_to_optimize
def append_block_lr_to_logs(block_lrs, logs, lr_scheduler, optimizer_type):
names = []
block_index = 0
while block_index < UNET_NUM_BLOCKS_FOR_BLOCK_LR + 2:
if block_index < UNET_NUM_BLOCKS_FOR_BLOCK_LR:
if block_lrs[block_index] == 0:
block_index += 1
continue
names.append(f"block{block_index}")
elif block_index == UNET_NUM_BLOCKS_FOR_BLOCK_LR:
names.append("text_encoder1")
elif block_index == UNET_NUM_BLOCKS_FOR_BLOCK_LR + 1:
names.append("text_encoder2")
block_index += 1
train_util.append_lr_to_logs_with_names(logs, lr_scheduler, optimizer_type, names)
def train(args):
train_util.verify_training_args(args)
train_util.prepare_dataset_args(args, True)
sdxl_train_util.verify_sdxl_training_args(args)
deepspeed_utils.prepare_deepspeed_args(args)
setup_logging(args, reset=True)
assert (
not args.weighted_captions
), "weighted_captions is not supported currently / weighted_captionsは現在サポートされていません"
assert (
not args.train_text_encoder or not args.cache_text_encoder_outputs
), "cache_text_encoder_outputs is not supported when training text encoder / text encoderを学習するときはcache_text_encoder_outputsはサポートされていません"
if args.block_lr:
block_lrs = [float(lr) for lr in args.block_lr.split(",")]
assert (
len(block_lrs) == UNET_NUM_BLOCKS_FOR_BLOCK_LR
), f"block_lr must have {UNET_NUM_BLOCKS_FOR_BLOCK_LR} values / block_lrは{UNET_NUM_BLOCKS_FOR_BLOCK_LR}個の値を指定してください"
else:
block_lrs = None
cache_latents = args.cache_latents
use_dreambooth_method = args.in_json is None
if args.seed is not None:
set_seed(args.seed) # 乱数系列を初期化する
tokenizer1, tokenizer2 = sdxl_train_util.load_tokenizers(args)
# データセットを準備する
if args.dataset_class is None:
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, args.masked_loss, True))
if args.dataset_config is not None:
logger.info(f"Load dataset config from {args.dataset_config}")
user_config = config_util.load_user_config(args.dataset_config)
ignored = ["train_data_dir", "in_json"]
if any(getattr(args, attr) is not None for attr in ignored):
logger.warning(
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
", ".join(ignored)
)
)
else:
if use_dreambooth_method:
logger.info("Using DreamBooth method.")
user_config = {
"datasets": [
{
"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(
args.train_data_dir, args.reg_data_dir
)
}
]
}
else:
logger.info("Training with captions.")
user_config = {
"datasets": [
{
"subsets": [
{
"image_dir": args.train_data_dir,
"metadata_file": args.in_json,
}
]
}
]
}
blueprint = blueprint_generator.generate(user_config, args, tokenizer=[tokenizer1, tokenizer2])
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
else:
train_dataset_group = train_util.load_arbitrary_dataset(args, [tokenizer1, tokenizer2])
current_epoch = Value("i", 0)
current_step = Value("i", 0)
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)
train_dataset_group.verify_bucket_reso_steps(32)
if args.debug_dataset:
train_util.debug_dataset(train_dataset_group, True)
return
if len(train_dataset_group) == 0:
logger.error(
"No data found. Please verify the metadata file and train_data_dir option. / 画像がありません。メタデータおよびtrain_data_dirオプションを確認してください。"
)
return
if cache_latents:
assert (
train_dataset_group.is_latent_cacheable()
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
if args.cache_text_encoder_outputs:
assert (
train_dataset_group.is_text_encoder_output_cacheable()
), "when caching text encoder output, either caption_dropout_rate, shuffle_caption, token_warmup_step or caption_tag_dropout_rate cannot be used / text encoderの出力をキャッシュするときはcaption_dropout_rate, shuffle_caption, token_warmup_step, caption_tag_dropout_rateは使えません"
# acceleratorを準備する
logger.info("prepare accelerator")
accelerator = train_util.prepare_accelerator(args)
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype, save_dtype = train_util.prepare_dtype(args)
vae_dtype = torch.float32 if args.no_half_vae else weight_dtype
# モデルを読み込む
(
load_stable_diffusion_format,
text_encoder1,
text_encoder2,
vae,
unet,
logit_scale,
ckpt_info,
) = sdxl_train_util.load_target_model(args, accelerator, "sdxl", weight_dtype)
# logit_scale = logit_scale.to(accelerator.device, dtype=weight_dtype)
# verify load/save model formats
if load_stable_diffusion_format:
src_stable_diffusion_ckpt = args.pretrained_model_name_or_path
src_diffusers_model_path = None
else:
src_stable_diffusion_ckpt = None
src_diffusers_model_path = args.pretrained_model_name_or_path
if args.save_model_as is None:
save_stable_diffusion_format = load_stable_diffusion_format
use_safetensors = args.use_safetensors
else:
save_stable_diffusion_format = args.save_model_as.lower() == "ckpt" or args.save_model_as.lower() == "safetensors"
use_safetensors = args.use_safetensors or ("safetensors" in args.save_model_as.lower())
# assert save_stable_diffusion_format, "save_model_as must be ckpt or safetensors / save_model_asはckptかsafetensorsである必要があります"
# Diffusers版のxformers使用フラグを設定する関数
def set_diffusers_xformers_flag(model, valid):
def fn_recursive_set_mem_eff(module: torch.nn.Module):
if hasattr(module, "set_use_memory_efficient_attention_xformers"):
module.set_use_memory_efficient_attention_xformers(valid)
for child in module.children():
fn_recursive_set_mem_eff(child)
fn_recursive_set_mem_eff(model)
# モデルに xformers とか memory efficient attention を組み込む
if args.diffusers_xformers:
# もうU-Netを独自にしたので動かないけどVAEのxformersは動くはず
accelerator.print("Use xformers by Diffusers")
# set_diffusers_xformers_flag(unet, True)
set_diffusers_xformers_flag(vae, True)
else:
# Windows版のxformersはfloatで学習できなかったりするのでxformersを使わない設定も可能にしておく必要がある
accelerator.print("Disable Diffusers' xformers")
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa)
if torch.__version__ >= "2.0.0": # PyTorch 2.0.0 以上対応のxformersなら以下が使える
vae.set_use_memory_efficient_attention_xformers(args.xformers)
# 学習を準備する
if cache_latents:
vae.to(accelerator.device, dtype=vae_dtype)
vae.requires_grad_(False)
vae.eval()
with torch.no_grad():
train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process)
vae.to("cpu")
clean_memory_on_device(accelerator.device)
accelerator.wait_for_everyone()
# 学習を準備する:モデルを適切な状態にする
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
train_unet = args.learning_rate > 0
train_text_encoder1 = False
train_text_encoder2 = False
if args.train_text_encoder:
# TODO each option for two text encoders?
accelerator.print("enable text encoder training")
if args.gradient_checkpointing:
text_encoder1.gradient_checkpointing_enable()
text_encoder2.gradient_checkpointing_enable()
lr_te1 = args.learning_rate_te1 if args.learning_rate_te1 is not None else args.learning_rate # 0 means not train
lr_te2 = args.learning_rate_te2 if args.learning_rate_te2 is not None else args.learning_rate # 0 means not train
train_text_encoder1 = lr_te1 > 0
train_text_encoder2 = lr_te2 > 0
# caching one text encoder output is not supported
if not train_text_encoder1:
text_encoder1.to(weight_dtype)
if not train_text_encoder2:
text_encoder2.to(weight_dtype)
text_encoder1.requires_grad_(train_text_encoder1)
text_encoder2.requires_grad_(train_text_encoder2)
text_encoder1.train(train_text_encoder1)
text_encoder2.train(train_text_encoder2)
else:
text_encoder1.to(weight_dtype)
text_encoder2.to(weight_dtype)
text_encoder1.requires_grad_(False)
text_encoder2.requires_grad_(False)
text_encoder1.eval()
text_encoder2.eval()
# TextEncoderの出力をキャッシュする
if args.cache_text_encoder_outputs:
# Text Encodes are eval and no grad
with torch.no_grad(), accelerator.autocast():
train_dataset_group.cache_text_encoder_outputs(
(tokenizer1, tokenizer2),
(text_encoder1, text_encoder2),
accelerator.device,
None,
args.cache_text_encoder_outputs_to_disk,
accelerator.is_main_process,
)
accelerator.wait_for_everyone()
if not cache_latents:
vae.requires_grad_(False)
vae.eval()
vae.to(accelerator.device, dtype=vae_dtype)
unet.requires_grad_(train_unet)
if not train_unet:
unet.to(accelerator.device, dtype=weight_dtype) # because of unet is not prepared
training_models = []
params_to_optimize = []
if train_unet:
training_models.append(unet)
if block_lrs is None:
params_to_optimize.append({"params": list(unet.parameters()), "lr": args.learning_rate})
else:
params_to_optimize.extend(get_block_params_to_optimize(unet, block_lrs))
if train_text_encoder1:
training_models.append(text_encoder1)
params_to_optimize.append({"params": list(text_encoder1.parameters()), "lr": args.learning_rate_te1 or args.learning_rate})
if train_text_encoder2:
training_models.append(text_encoder2)
params_to_optimize.append({"params": list(text_encoder2.parameters()), "lr": args.learning_rate_te2 or args.learning_rate})
# calculate number of trainable parameters
n_params = 0
for params in params_to_optimize:
for p in params["params"]:
n_params += p.numel()
accelerator.print(f"train unet: {train_unet}, text_encoder1: {train_text_encoder1}, text_encoder2: {train_text_encoder2}")
accelerator.print(f"number of models: {len(training_models)}")
accelerator.print(f"number of trainable parameters: {n_params}")
# 学習に必要なクラスを準備する
accelerator.print("prepare optimizer, data loader etc.")
_, _, optimizer = train_util.get_optimizer(args, trainable_params=params_to_optimize)
# dataloaderを準備する
# DataLoaderのプロセス数:0 は persistent_workers が使えないので注意
n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers
train_dataloader = torch.utils.data.DataLoader(
train_dataset_group,
batch_size=1,
shuffle=True,
collate_fn=collator,
num_workers=n_workers,
persistent_workers=args.persistent_data_loader_workers,
)
# 学習ステップ数を計算する
if args.max_train_epochs is not None:
args.max_train_steps = args.max_train_epochs * math.ceil(
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
)
accelerator.print(
f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}"
)
# データセット側にも学習ステップを送信
train_dataset_group.set_max_train_steps(args.max_train_steps)
# lr schedulerを用意する
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
# 実験的機能:勾配も含めたfp16/bf16学習を行う モデル全体をfp16/bf16にする
if args.full_fp16:
assert (
args.mixed_precision == "fp16"
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
accelerator.print("enable full fp16 training.")
unet.to(weight_dtype)
text_encoder1.to(weight_dtype)
text_encoder2.to(weight_dtype)
elif args.full_bf16:
assert (
args.mixed_precision == "bf16"
), "full_bf16 requires mixed precision='bf16' / full_bf16を使う場合はmixed_precision='bf16'を指定してください。"
accelerator.print("enable full bf16 training.")
unet.to(weight_dtype)
text_encoder1.to(weight_dtype)
text_encoder2.to(weight_dtype)
# freeze last layer and final_layer_norm in te1 since we use the output of the penultimate layer
if train_text_encoder1:
text_encoder1.text_model.encoder.layers[-1].requires_grad_(False)
text_encoder1.text_model.final_layer_norm.requires_grad_(False)
if args.deepspeed:
ds_model = deepspeed_utils.prepare_deepspeed_model(
args,
unet=unet if train_unet else None,
text_encoder1=text_encoder1 if train_text_encoder1 else None,
text_encoder2=text_encoder2 if train_text_encoder2 else None,
)
# most of ZeRO stage uses optimizer partitioning, so we have to prepare optimizer and ds_model at the same time. # pull/1139#issuecomment-1986790007
ds_model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
ds_model, optimizer, train_dataloader, lr_scheduler
)
training_models = [ds_model]
else:
# acceleratorがなんかよろしくやってくれるらしい
if train_unet:
unet = accelerator.prepare(unet)
if train_text_encoder1:
text_encoder1 = accelerator.prepare(text_encoder1)
if train_text_encoder2:
text_encoder2 = accelerator.prepare(text_encoder2)
optimizer, train_dataloader, lr_scheduler = accelerator.prepare(optimizer, train_dataloader, lr_scheduler)
# TextEncoderの出力をキャッシュするときにはCPUへ移動する
if args.cache_text_encoder_outputs:
# move Text Encoders for sampling images. Text Encoder doesn't work on CPU with fp16
text_encoder1.to("cpu", dtype=torch.float32)
text_encoder2.to("cpu", dtype=torch.float32)
clean_memory_on_device(accelerator.device)
else:
# make sure Text Encoders are on GPU
text_encoder1.to(accelerator.device)
text_encoder2.to(accelerator.device)
# 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
if args.full_fp16:
# During deepseed training, accelerate not handles fp16/bf16|mixed precision directly via scaler. Let deepspeed engine do.
# -> But we think it's ok to patch accelerator even if deepspeed is enabled.
train_util.patch_accelerator_for_fp16_training(accelerator)
# resumeする
train_util.resume_from_local_or_hf_if_specified(accelerator, args)
# epoch数を計算する
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
# 学習する
# total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
accelerator.print("running training / 学習開始")
accelerator.print(f" num examples / サンプル数: {train_dataset_group.num_train_images}")
accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
accelerator.print(f" num epochs / epoch数: {num_train_epochs}")
accelerator.print(
f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}"
)
# accelerator.print(
# f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}"
# )
accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
global_step = 0
noise_scheduler = DDPMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
)
prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device)
if args.zero_terminal_snr:
custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler)
if accelerator.is_main_process:
init_kwargs = {}
if args.wandb_run_name:
init_kwargs["wandb"] = {"name": args.wandb_run_name}
if args.log_tracker_config is not None:
init_kwargs = toml.load(args.log_tracker_config)
accelerator.init_trackers("finetuning" if args.log_tracker_name is None else args.log_tracker_name, init_kwargs=init_kwargs)
# For --sample_at_first
sdxl_train_util.sample_images(
accelerator, args, 0, global_step, accelerator.device, vae, [tokenizer1, tokenizer2], [text_encoder1, text_encoder2], unet
)
loss_recorder = train_util.LossRecorder()
for epoch in range(num_train_epochs):
accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}")
current_epoch.value = epoch + 1
for m in training_models:
m.train()
for step, batch in enumerate(train_dataloader):
current_step.value = global_step
with accelerator.accumulate(*training_models):
if "latents" in batch and batch["latents"] is not None:
latents = batch["latents"].to(accelerator.device).to(dtype=weight_dtype)
else:
with torch.no_grad():
# latentに変換
latents = vae.encode(batch["images"].to(vae_dtype)).latent_dist.sample().to(weight_dtype)
# NaNが含まれていれば警告を表示し0に置き換える
if torch.any(torch.isnan(latents)):
accelerator.print("NaN found in latents, replacing with zeros")
latents = torch.nan_to_num(latents, 0, out=latents)
latents = latents * sdxl_model_util.VAE_SCALE_FACTOR
if "text_encoder_outputs1_list" not in batch or batch["text_encoder_outputs1_list"] is None:
input_ids1 = batch["input_ids"]
input_ids2 = batch["input_ids2"]
with torch.set_grad_enabled(args.train_text_encoder):
# Get the text embedding for conditioning
# TODO support weighted captions
# if args.weighted_captions:
# encoder_hidden_states = get_weighted_text_embeddings(
# tokenizer,
# text_encoder,
# batch["captions"],
# accelerator.device,
# args.max_token_length // 75 if args.max_token_length else 1,
# clip_skip=args.clip_skip,
# )
# else:
input_ids1 = input_ids1.to(accelerator.device)
input_ids2 = input_ids2.to(accelerator.device)
# unwrap_model is fine for models not wrapped by accelerator
encoder_hidden_states1, encoder_hidden_states2, pool2 = train_util.get_hidden_states_sdxl(
args.max_token_length,
input_ids1,
input_ids2,
tokenizer1,
tokenizer2,
text_encoder1,
text_encoder2,
None if not args.full_fp16 else weight_dtype,
accelerator=accelerator,
)
else:
encoder_hidden_states1 = batch["text_encoder_outputs1_list"].to(accelerator.device).to(weight_dtype)
encoder_hidden_states2 = batch["text_encoder_outputs2_list"].to(accelerator.device).to(weight_dtype)
pool2 = batch["text_encoder_pool2_list"].to(accelerator.device).to(weight_dtype)
# # verify that the text encoder outputs are correct
# ehs1, ehs2, p2 = train_util.get_hidden_states_sdxl(
# args.max_token_length,
# batch["input_ids"].to(text_encoder1.device),
# batch["input_ids2"].to(text_encoder1.device),
# tokenizer1,
# tokenizer2,
# text_encoder1,
# text_encoder2,
# None if not args.full_fp16 else weight_dtype,
# )
# b_size = encoder_hidden_states1.shape[0]
# assert ((encoder_hidden_states1.to("cpu") - ehs1.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2
# assert ((encoder_hidden_states2.to("cpu") - ehs2.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2
# assert ((pool2.to("cpu") - p2.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2
# logger.info("text encoder outputs verified")
# get size embeddings
orig_size = batch["original_sizes_hw"]
crop_size = batch["crop_top_lefts"]
target_size = batch["target_sizes_hw"]
embs = sdxl_train_util.get_size_embeddings(orig_size, crop_size, target_size, accelerator.device).to(weight_dtype)
# concat embeddings
vector_embedding = torch.cat([pool2, embs], dim=1).to(weight_dtype)
text_embedding = torch.cat([encoder_hidden_states1, encoder_hidden_states2], dim=2).to(weight_dtype)
# Sample noise, sample a random timestep for each image, and add noise to the latents,
# with noise offset and/or multires noise if specified
noise, noisy_latents, timesteps, huber_c = train_util.get_noise_noisy_latents_and_timesteps(args, noise_scheduler, latents)
noisy_latents = noisy_latents.to(weight_dtype) # TODO check why noisy_latents is not weight_dtype
# Predict the noise residual
with accelerator.autocast():
noise_pred = unet(noisy_latents, timesteps, text_embedding, vector_embedding)
target = noise
if (
args.min_snr_gamma
or args.scale_v_pred_loss_like_noise_pred
or args.v_pred_like_loss
or args.debiased_estimation_loss
or args.masked_loss
):
# do not mean over batch dimension for snr weight or scale v-pred loss
loss = train_util.conditional_loss(noise_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c)
if args.masked_loss:
loss = apply_masked_loss(loss, batch)
loss = loss.mean([1, 2, 3])
if args.min_snr_gamma:
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
if args.scale_v_pred_loss_like_noise_pred:
loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler)
if args.v_pred_like_loss:
loss = add_v_prediction_like_loss(loss, timesteps, noise_scheduler, args.v_pred_like_loss)
if args.debiased_estimation_loss:
loss = apply_debiased_estimation(loss, timesteps, noise_scheduler)
loss = loss.mean() # mean over batch dimension
else:
loss = train_util.conditional_loss(noise_pred.float(), target.float(), reduction="mean", loss_type=args.loss_type, huber_c=huber_c)
accelerator.backward(loss)
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
params_to_clip = []
for m in training_models:
params_to_clip.extend(m.parameters())
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
sdxl_train_util.sample_images(
accelerator,
args,
None,
global_step,
accelerator.device,
vae,
[tokenizer1, tokenizer2],
[text_encoder1, text_encoder2],
unet,
)
# 指定ステップごとにモデルを保存
if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0:
accelerator.wait_for_everyone()
if accelerator.is_main_process:
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
sdxl_train_util.save_sd_model_on_epoch_end_or_stepwise(
args,
False,
accelerator,
src_path,
save_stable_diffusion_format,
use_safetensors,
save_dtype,
epoch,
num_train_epochs,
global_step,
accelerator.unwrap_model(text_encoder1),
accelerator.unwrap_model(text_encoder2),
accelerator.unwrap_model(unet),
vae,
logit_scale,
ckpt_info,
)
current_loss = loss.detach().item() # 平均なのでbatch sizeは関係ないはず
if args.logging_dir is not None:
logs = {"loss": current_loss}
if block_lrs is None:
train_util.append_lr_to_logs(logs, lr_scheduler, args.optimizer_type, including_unet=train_unet)
else:
append_block_lr_to_logs(block_lrs, logs, lr_scheduler, args.optimizer_type) # U-Net is included in block_lrs
accelerator.log(logs, step=global_step)
loss_recorder.add(epoch=epoch, step=step, loss=current_loss)
avr_loss: float = loss_recorder.moving_average
logs = {"avr_loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if global_step >= args.max_train_steps:
break
if args.logging_dir is not None:
logs = {"loss/epoch": loss_recorder.moving_average}
accelerator.log(logs, step=epoch + 1)
accelerator.wait_for_everyone()
if args.save_every_n_epochs is not None:
if accelerator.is_main_process:
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
sdxl_train_util.save_sd_model_on_epoch_end_or_stepwise(
args,
True,
accelerator,
src_path,
save_stable_diffusion_format,
use_safetensors,
save_dtype,
epoch,
num_train_epochs,
global_step,
accelerator.unwrap_model(text_encoder1),
accelerator.unwrap_model(text_encoder2),
accelerator.unwrap_model(unet),
vae,
logit_scale,
ckpt_info,
)
sdxl_train_util.sample_images(
accelerator,
args,
epoch + 1,
global_step,
accelerator.device,
vae,
[tokenizer1, tokenizer2],
[text_encoder1, text_encoder2],
unet,
)
is_main_process = accelerator.is_main_process
# if is_main_process:
unet = accelerator.unwrap_model(unet)
text_encoder1 = accelerator.unwrap_model(text_encoder1)
text_encoder2 = accelerator.unwrap_model(text_encoder2)
accelerator.end_training()
if args.save_state or args.save_state_on_train_end:
train_util.save_state_on_train_end(args, accelerator)
del accelerator # この後メモリを使うのでこれは消す
if is_main_process:
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
sdxl_train_util.save_sd_model_on_train_end(
args,
src_path,
save_stable_diffusion_format,
use_safetensors,
save_dtype,
epoch,
global_step,
text_encoder1,
text_encoder2,
unet,
vae,
logit_scale,
ckpt_info,
)
logger.info("model saved.")
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
add_logging_arguments(parser)
train_util.add_sd_models_arguments(parser)
train_util.add_dataset_arguments(parser, True, True, True)
train_util.add_training_arguments(parser, False)
train_util.add_masked_loss_arguments(parser)
deepspeed_utils.add_deepspeed_arguments(parser)
train_util.add_sd_saving_arguments(parser)
train_util.add_optimizer_arguments(parser)
config_util.add_config_arguments(parser)
custom_train_functions.add_custom_train_arguments(parser)
sdxl_train_util.add_sdxl_training_arguments(parser)
parser.add_argument(
"--learning_rate_te1",
type=float,
default=None,
help="learning rate for text encoder 1 (ViT-L) / text encoder 1 (ViT-L)の学習率",
)
parser.add_argument(
"--learning_rate_te2",
type=float,
default=None,
help="learning rate for text encoder 2 (BiG-G) / text encoder 2 (BiG-G)の学習率",
)
parser.add_argument(
"--diffusers_xformers", action="store_true", help="use xformers by diffusers / Diffusersでxformersを使用する"
)
parser.add_argument("--train_text_encoder", action="store_true", help="train text encoder / text encoderも学習する")
parser.add_argument(
"--no_half_vae",
action="store_true",
help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う",
)
parser.add_argument(
"--block_lr",
type=str,
default=None,
help=f"learning rates for each block of U-Net, comma-separated, {UNET_NUM_BLOCKS_FOR_BLOCK_LR} values / "
+ f"U-Netの各ブロックの学習率、カンマ区切り、{UNET_NUM_BLOCKS_FOR_BLOCK_LR}個の値",
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
train_util.verify_command_line_training_args(args)
args = train_util.read_config_from_file(args, parser)
train(args)