|
|
|
|
|
|
|
import argparse |
|
import json |
|
import math |
|
import os |
|
import random |
|
import time |
|
from multiprocessing import Value |
|
from types import SimpleNamespace |
|
import toml |
|
|
|
from tqdm import tqdm |
|
|
|
import torch |
|
from library.device_utils import init_ipex, clean_memory_on_device |
|
init_ipex() |
|
|
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
from accelerate.utils import set_seed |
|
import accelerate |
|
from diffusers import DDPMScheduler, ControlNetModel |
|
from safetensors.torch import load_file |
|
from library import deepspeed_utils, sai_model_spec, sdxl_model_util, sdxl_original_unet, sdxl_train_util |
|
|
|
import library.model_util as model_util |
|
import library.train_util as train_util |
|
import library.config_util as config_util |
|
from library.config_util import ( |
|
ConfigSanitizer, |
|
BlueprintGenerator, |
|
) |
|
import library.huggingface_util as huggingface_util |
|
import library.custom_train_functions as custom_train_functions |
|
from library.custom_train_functions import ( |
|
add_v_prediction_like_loss, |
|
apply_snr_weight, |
|
prepare_scheduler_for_custom_training, |
|
pyramid_noise_like, |
|
apply_noise_offset, |
|
scale_v_prediction_loss_like_noise_prediction, |
|
apply_debiased_estimation, |
|
) |
|
import networks.control_net_lllite_for_train as control_net_lllite_for_train |
|
from library.utils import setup_logging, add_logging_arguments |
|
|
|
setup_logging() |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
def generate_step_logs(args: argparse.Namespace, current_loss, avr_loss, lr_scheduler): |
|
logs = { |
|
"loss/current": current_loss, |
|
"loss/average": avr_loss, |
|
"lr": lr_scheduler.get_last_lr()[0], |
|
} |
|
|
|
if args.optimizer_type.lower().startswith("DAdapt".lower()): |
|
logs["lr/d*lr"] = lr_scheduler.optimizers[-1].param_groups[0]["d"] * lr_scheduler.optimizers[-1].param_groups[0]["lr"] |
|
|
|
return logs |
|
|
|
|
|
def train(args): |
|
train_util.verify_training_args(args) |
|
train_util.prepare_dataset_args(args, True) |
|
sdxl_train_util.verify_sdxl_training_args(args) |
|
setup_logging(args, reset=True) |
|
|
|
cache_latents = args.cache_latents |
|
use_user_config = args.dataset_config is not None |
|
|
|
if args.seed is None: |
|
args.seed = random.randint(0, 2**32) |
|
set_seed(args.seed) |
|
|
|
tokenizer1, tokenizer2 = sdxl_train_util.load_tokenizers(args) |
|
|
|
|
|
blueprint_generator = BlueprintGenerator(ConfigSanitizer(False, False, True, True)) |
|
if use_user_config: |
|
logger.info(f"Load dataset config from {args.dataset_config}") |
|
user_config = config_util.load_user_config(args.dataset_config) |
|
ignored = ["train_data_dir", "conditioning_data_dir"] |
|
if any(getattr(args, attr) is not None for attr in ignored): |
|
logger.warning( |
|
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format( |
|
", ".join(ignored) |
|
) |
|
) |
|
else: |
|
user_config = { |
|
"datasets": [ |
|
{ |
|
"subsets": config_util.generate_controlnet_subsets_config_by_subdirs( |
|
args.train_data_dir, |
|
args.conditioning_data_dir, |
|
args.caption_extension, |
|
) |
|
} |
|
] |
|
} |
|
|
|
blueprint = blueprint_generator.generate(user_config, args, tokenizer=[tokenizer1, tokenizer2]) |
|
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group) |
|
|
|
current_epoch = Value("i", 0) |
|
current_step = Value("i", 0) |
|
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None |
|
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator) |
|
|
|
train_dataset_group.verify_bucket_reso_steps(32) |
|
|
|
if args.debug_dataset: |
|
train_util.debug_dataset(train_dataset_group) |
|
return |
|
if len(train_dataset_group) == 0: |
|
logger.error( |
|
"No data found. Please verify arguments (train_data_dir must be the parent of folders with images) / 画像がありません。引数指定を確認してください(train_data_dirには画像があるフォルダではなく、画像があるフォルダの親フォルダを指定する必要があります)" |
|
) |
|
return |
|
|
|
if cache_latents: |
|
assert ( |
|
train_dataset_group.is_latent_cacheable() |
|
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません" |
|
else: |
|
logger.warning( |
|
"WARNING: random_crop is not supported yet for ControlNet training / ControlNetの学習ではrandom_cropはまだサポートされていません" |
|
) |
|
|
|
if args.cache_text_encoder_outputs: |
|
assert ( |
|
train_dataset_group.is_text_encoder_output_cacheable() |
|
), "when caching Text Encoder output, either caption_dropout_rate, shuffle_caption, token_warmup_step or caption_tag_dropout_rate cannot be used / Text Encoderの出力をキャッシュするときはcaption_dropout_rate, shuffle_caption, token_warmup_step, caption_tag_dropout_rateは使えません" |
|
|
|
|
|
logger.info("prepare accelerator") |
|
accelerator = train_util.prepare_accelerator(args) |
|
is_main_process = accelerator.is_main_process |
|
|
|
|
|
weight_dtype, save_dtype = train_util.prepare_dtype(args) |
|
vae_dtype = torch.float32 if args.no_half_vae else weight_dtype |
|
|
|
|
|
( |
|
load_stable_diffusion_format, |
|
text_encoder1, |
|
text_encoder2, |
|
vae, |
|
unet, |
|
logit_scale, |
|
ckpt_info, |
|
) = sdxl_train_util.load_target_model(args, accelerator, sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, weight_dtype) |
|
|
|
|
|
if cache_latents: |
|
vae.to(accelerator.device, dtype=vae_dtype) |
|
vae.requires_grad_(False) |
|
vae.eval() |
|
with torch.no_grad(): |
|
train_dataset_group.cache_latents( |
|
vae, |
|
args.vae_batch_size, |
|
args.cache_latents_to_disk, |
|
accelerator.is_main_process, |
|
) |
|
vae.to("cpu") |
|
clean_memory_on_device(accelerator.device) |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
|
|
if args.cache_text_encoder_outputs: |
|
|
|
with torch.no_grad(): |
|
train_dataset_group.cache_text_encoder_outputs( |
|
(tokenizer1, tokenizer2), |
|
(text_encoder1, text_encoder2), |
|
accelerator.device, |
|
None, |
|
args.cache_text_encoder_outputs_to_disk, |
|
accelerator.is_main_process, |
|
) |
|
accelerator.wait_for_everyone() |
|
|
|
|
|
control_net_lllite_for_train.replace_unet_linear_and_conv2d() |
|
|
|
if args.network_weights is not None: |
|
accelerator.print(f"initialize U-Net with ControlNet-LLLite") |
|
with accelerate.init_empty_weights(): |
|
unet_lllite = control_net_lllite_for_train.SdxlUNet2DConditionModelControlNetLLLite() |
|
unet_lllite.to(accelerator.device, dtype=weight_dtype) |
|
|
|
unet_sd = unet.state_dict() |
|
info = unet_lllite.load_lllite_weights(args.network_weights, unet_sd) |
|
accelerator.print(f"load ControlNet-LLLite weights from {args.network_weights}: {info}") |
|
else: |
|
|
|
accelerator.print("sending U-Net to GPU") |
|
unet.to(accelerator.device, dtype=weight_dtype) |
|
unet_sd = unet.state_dict() |
|
|
|
|
|
accelerator.print(f"initialize U-Net with ControlNet-LLLite") |
|
|
|
if args.lowram: |
|
with accelerate.init_on_device(accelerator.device): |
|
unet_lllite = control_net_lllite_for_train.SdxlUNet2DConditionModelControlNetLLLite() |
|
else: |
|
unet_lllite = control_net_lllite_for_train.SdxlUNet2DConditionModelControlNetLLLite() |
|
unet_lllite.to(weight_dtype) |
|
|
|
info = unet_lllite.load_lllite_weights(None, unet_sd) |
|
accelerator.print(f"init U-Net with ControlNet-LLLite weights: {info}") |
|
del unet_sd, unet |
|
|
|
unet: control_net_lllite_for_train.SdxlUNet2DConditionModelControlNetLLLite = unet_lllite |
|
del unet_lllite |
|
|
|
unet.apply_lllite(args.cond_emb_dim, args.network_dim, args.network_dropout) |
|
|
|
|
|
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa) |
|
|
|
if args.gradient_checkpointing: |
|
unet.enable_gradient_checkpointing() |
|
|
|
|
|
accelerator.print("prepare optimizer, data loader etc.") |
|
|
|
trainable_params = list(unet.prepare_params()) |
|
logger.info(f"trainable params count: {len(trainable_params)}") |
|
logger.info(f"number of trainable parameters: {sum(p.numel() for p in trainable_params if p.requires_grad)}") |
|
|
|
_, _, optimizer = train_util.get_optimizer(args, trainable_params) |
|
|
|
|
|
|
|
n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) |
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset_group, |
|
batch_size=1, |
|
shuffle=True, |
|
collate_fn=collator, |
|
num_workers=n_workers, |
|
persistent_workers=args.persistent_data_loader_workers, |
|
) |
|
|
|
|
|
if args.max_train_epochs is not None: |
|
args.max_train_steps = args.max_train_epochs * math.ceil( |
|
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps |
|
) |
|
accelerator.print( |
|
f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}" |
|
) |
|
|
|
|
|
train_dataset_group.set_max_train_steps(args.max_train_steps) |
|
|
|
|
|
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
unet.to(weight_dtype) |
|
|
|
|
|
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler) |
|
|
|
if args.gradient_checkpointing: |
|
unet.train() |
|
else: |
|
unet.eval() |
|
|
|
|
|
if args.cache_text_encoder_outputs: |
|
|
|
text_encoder1.to("cpu", dtype=torch.float32) |
|
text_encoder2.to("cpu", dtype=torch.float32) |
|
clean_memory_on_device(accelerator.device) |
|
else: |
|
|
|
text_encoder1.to(accelerator.device) |
|
text_encoder2.to(accelerator.device) |
|
|
|
if not cache_latents: |
|
vae.requires_grad_(False) |
|
vae.eval() |
|
vae.to(accelerator.device, dtype=vae_dtype) |
|
|
|
|
|
if args.full_fp16: |
|
train_util.patch_accelerator_for_fp16_training(accelerator) |
|
|
|
|
|
train_util.resume_from_local_or_hf_if_specified(accelerator, args) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0): |
|
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1 |
|
|
|
|
|
|
|
accelerator.print("running training / 学習開始") |
|
accelerator.print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}") |
|
accelerator.print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}") |
|
accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") |
|
accelerator.print(f" num epochs / epoch数: {num_train_epochs}") |
|
accelerator.print( |
|
f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}" |
|
) |
|
|
|
accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") |
|
accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") |
|
|
|
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps") |
|
global_step = 0 |
|
|
|
noise_scheduler = DDPMScheduler( |
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False |
|
) |
|
prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device) |
|
if args.zero_terminal_snr: |
|
custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler) |
|
|
|
if accelerator.is_main_process: |
|
init_kwargs = {} |
|
if args.wandb_run_name: |
|
init_kwargs["wandb"] = {"name": args.wandb_run_name} |
|
if args.log_tracker_config is not None: |
|
init_kwargs = toml.load(args.log_tracker_config) |
|
accelerator.init_trackers( |
|
"lllite_control_net_train" if args.log_tracker_name is None else args.log_tracker_name, init_kwargs=init_kwargs |
|
) |
|
|
|
loss_recorder = train_util.LossRecorder() |
|
del train_dataset_group |
|
|
|
|
|
def save_model( |
|
ckpt_name, |
|
unwrapped_nw: control_net_lllite_for_train.SdxlUNet2DConditionModelControlNetLLLite, |
|
steps, |
|
epoch_no, |
|
force_sync_upload=False, |
|
): |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
ckpt_file = os.path.join(args.output_dir, ckpt_name) |
|
|
|
accelerator.print(f"\nsaving checkpoint: {ckpt_file}") |
|
sai_metadata = train_util.get_sai_model_spec(None, args, True, True, False) |
|
sai_metadata["modelspec.architecture"] = sai_model_spec.ARCH_SD_XL_V1_BASE + "/control-net-lllite" |
|
|
|
unwrapped_nw.save_lllite_weights(ckpt_file, save_dtype, sai_metadata) |
|
if args.huggingface_repo_id is not None: |
|
huggingface_util.upload(args, ckpt_file, "/" + ckpt_name, force_sync_upload=force_sync_upload) |
|
|
|
def remove_model(old_ckpt_name): |
|
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name) |
|
if os.path.exists(old_ckpt_file): |
|
accelerator.print(f"removing old checkpoint: {old_ckpt_file}") |
|
os.remove(old_ckpt_file) |
|
|
|
|
|
for epoch in range(num_train_epochs): |
|
accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}") |
|
current_epoch.value = epoch + 1 |
|
|
|
for step, batch in enumerate(train_dataloader): |
|
current_step.value = global_step |
|
with accelerator.accumulate(unet): |
|
with torch.no_grad(): |
|
if "latents" in batch and batch["latents"] is not None: |
|
latents = batch["latents"].to(accelerator.device).to(dtype=weight_dtype) |
|
else: |
|
|
|
latents = vae.encode(batch["images"].to(dtype=vae_dtype)).latent_dist.sample().to(dtype=weight_dtype) |
|
|
|
|
|
if torch.any(torch.isnan(latents)): |
|
accelerator.print("NaN found in latents, replacing with zeros") |
|
latents = torch.nan_to_num(latents, 0, out=latents) |
|
latents = latents * sdxl_model_util.VAE_SCALE_FACTOR |
|
|
|
if "text_encoder_outputs1_list" not in batch or batch["text_encoder_outputs1_list"] is None: |
|
input_ids1 = batch["input_ids"] |
|
input_ids2 = batch["input_ids2"] |
|
with torch.no_grad(): |
|
|
|
input_ids1 = input_ids1.to(accelerator.device) |
|
input_ids2 = input_ids2.to(accelerator.device) |
|
encoder_hidden_states1, encoder_hidden_states2, pool2 = train_util.get_hidden_states_sdxl( |
|
args.max_token_length, |
|
input_ids1, |
|
input_ids2, |
|
tokenizer1, |
|
tokenizer2, |
|
text_encoder1, |
|
text_encoder2, |
|
None if not args.full_fp16 else weight_dtype, |
|
) |
|
else: |
|
encoder_hidden_states1 = batch["text_encoder_outputs1_list"].to(accelerator.device).to(weight_dtype) |
|
encoder_hidden_states2 = batch["text_encoder_outputs2_list"].to(accelerator.device).to(weight_dtype) |
|
pool2 = batch["text_encoder_pool2_list"].to(accelerator.device).to(weight_dtype) |
|
|
|
|
|
orig_size = batch["original_sizes_hw"] |
|
crop_size = batch["crop_top_lefts"] |
|
target_size = batch["target_sizes_hw"] |
|
embs = sdxl_train_util.get_size_embeddings(orig_size, crop_size, target_size, accelerator.device).to(weight_dtype) |
|
|
|
|
|
vector_embedding = torch.cat([pool2, embs], dim=1).to(weight_dtype) |
|
text_embedding = torch.cat([encoder_hidden_states1, encoder_hidden_states2], dim=2).to(weight_dtype) |
|
|
|
|
|
|
|
noise, noisy_latents, timesteps, huber_c = train_util.get_noise_noisy_latents_and_timesteps(args, noise_scheduler, latents) |
|
|
|
noisy_latents = noisy_latents.to(weight_dtype) |
|
|
|
controlnet_image = batch["conditioning_images"].to(dtype=weight_dtype) |
|
|
|
with accelerator.autocast(): |
|
|
|
|
|
|
|
|
|
noise_pred = unet(noisy_latents, timesteps, text_embedding, vector_embedding, controlnet_image) |
|
|
|
if args.v_parameterization: |
|
|
|
target = noise_scheduler.get_velocity(latents, noise, timesteps) |
|
else: |
|
target = noise |
|
|
|
loss = train_util.conditional_loss(noise_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c) |
|
loss = loss.mean([1, 2, 3]) |
|
|
|
loss_weights = batch["loss_weights"] |
|
loss = loss * loss_weights |
|
|
|
if args.min_snr_gamma: |
|
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma, args.v_parameterization) |
|
if args.scale_v_pred_loss_like_noise_pred: |
|
loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler) |
|
if args.v_pred_like_loss: |
|
loss = add_v_prediction_like_loss(loss, timesteps, noise_scheduler, args.v_pred_like_loss) |
|
if args.debiased_estimation_loss: |
|
loss = apply_debiased_estimation(loss, timesteps, noise_scheduler) |
|
|
|
loss = loss.mean() |
|
|
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients and args.max_grad_norm != 0.0: |
|
params_to_clip = unet.get_trainable_params() |
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) |
|
|
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad(set_to_none=True) |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
|
|
|
|
|
|
if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0: |
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, global_step) |
|
save_model(ckpt_name, accelerator.unwrap_model(unet), global_step, epoch) |
|
|
|
if args.save_state: |
|
train_util.save_and_remove_state_stepwise(args, accelerator, global_step) |
|
|
|
remove_step_no = train_util.get_remove_step_no(args, global_step) |
|
if remove_step_no is not None: |
|
remove_ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, remove_step_no) |
|
remove_model(remove_ckpt_name) |
|
|
|
current_loss = loss.detach().item() |
|
loss_recorder.add(epoch=epoch, step=step, loss=current_loss) |
|
avr_loss: float = loss_recorder.moving_average |
|
logs = {"avr_loss": avr_loss} |
|
progress_bar.set_postfix(**logs) |
|
|
|
if args.logging_dir is not None: |
|
logs = generate_step_logs(args, current_loss, avr_loss, lr_scheduler) |
|
accelerator.log(logs, step=global_step) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
if args.logging_dir is not None: |
|
logs = {"loss/epoch": loss_recorder.moving_average} |
|
accelerator.log(logs, step=epoch + 1) |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
|
|
if args.save_every_n_epochs is not None: |
|
saving = (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs |
|
if is_main_process and saving: |
|
ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, epoch + 1) |
|
save_model(ckpt_name, accelerator.unwrap_model(unet), global_step, epoch + 1) |
|
|
|
remove_epoch_no = train_util.get_remove_epoch_no(args, epoch + 1) |
|
if remove_epoch_no is not None: |
|
remove_ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, remove_epoch_no) |
|
remove_model(remove_ckpt_name) |
|
|
|
if args.save_state: |
|
train_util.save_and_remove_state_on_epoch_end(args, accelerator, epoch + 1) |
|
|
|
|
|
|
|
|
|
|
|
if is_main_process: |
|
unet = accelerator.unwrap_model(unet) |
|
|
|
accelerator.end_training() |
|
|
|
if is_main_process and (args.save_state or args.save_state_on_train_end): |
|
train_util.save_state_on_train_end(args, accelerator) |
|
|
|
if is_main_process: |
|
ckpt_name = train_util.get_last_ckpt_name(args, "." + args.save_model_as) |
|
save_model(ckpt_name, unet, global_step, num_train_epochs, force_sync_upload=True) |
|
|
|
logger.info("model saved.") |
|
|
|
|
|
def setup_parser() -> argparse.ArgumentParser: |
|
parser = argparse.ArgumentParser() |
|
|
|
add_logging_arguments(parser) |
|
train_util.add_sd_models_arguments(parser) |
|
train_util.add_dataset_arguments(parser, False, True, True) |
|
train_util.add_training_arguments(parser, False) |
|
deepspeed_utils.add_deepspeed_arguments(parser) |
|
train_util.add_optimizer_arguments(parser) |
|
config_util.add_config_arguments(parser) |
|
custom_train_functions.add_custom_train_arguments(parser) |
|
sdxl_train_util.add_sdxl_training_arguments(parser) |
|
|
|
parser.add_argument( |
|
"--save_model_as", |
|
type=str, |
|
default="safetensors", |
|
choices=[None, "ckpt", "pt", "safetensors"], |
|
help="format to save the model (default is .safetensors) / モデル保存時の形式(デフォルトはsafetensors)", |
|
) |
|
parser.add_argument( |
|
"--cond_emb_dim", type=int, default=None, help="conditioning embedding dimension / 条件付け埋め込みの次元数" |
|
) |
|
parser.add_argument( |
|
"--network_weights", type=str, default=None, help="pretrained weights for network / 学習するネットワークの初期重み" |
|
) |
|
parser.add_argument("--network_dim", type=int, default=None, help="network dimensions (rank) / モジュールの次元数") |
|
parser.add_argument( |
|
"--network_dropout", |
|
type=float, |
|
default=None, |
|
help="Drops neurons out of training every step (0 or None is default behavior (no dropout), 1 would drop all neurons) / 訓練時に毎ステップでニューロンをdropする(0またはNoneはdropoutなし、1は全ニューロンをdropout)", |
|
) |
|
parser.add_argument( |
|
"--conditioning_data_dir", |
|
type=str, |
|
default=None, |
|
help="conditioning data directory / 条件付けデータのディレクトリ", |
|
) |
|
parser.add_argument( |
|
"--no_half_vae", |
|
action="store_true", |
|
help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う", |
|
) |
|
return parser |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
parser = setup_parser() |
|
|
|
args = parser.parse_args() |
|
train_util.verify_command_line_training_args(args) |
|
args = train_util.read_config_from_file(args, parser) |
|
|
|
train(args) |
|
|