|
|
|
|
|
from tqdm import tqdm |
|
from library import model_util |
|
import library.train_util as train_util |
|
import argparse |
|
from transformers import CLIPTokenizer |
|
|
|
import torch |
|
from library.device_utils import init_ipex, get_preferred_device |
|
init_ipex() |
|
|
|
import library.model_util as model_util |
|
import lora |
|
from library.utils import setup_logging |
|
setup_logging() |
|
import logging |
|
logger = logging.getLogger(__name__) |
|
|
|
TOKENIZER_PATH = "openai/clip-vit-large-patch14" |
|
V2_STABLE_DIFFUSION_PATH = "stabilityai/stable-diffusion-2" |
|
|
|
DEVICE = get_preferred_device() |
|
|
|
|
|
def interrogate(args): |
|
weights_dtype = torch.float16 |
|
|
|
|
|
logger.info(f"loading SD model: {args.sd_model}") |
|
args.pretrained_model_name_or_path = args.sd_model |
|
args.vae = None |
|
text_encoder, vae, unet, _ = train_util._load_target_model(args,weights_dtype, DEVICE) |
|
|
|
logger.info(f"loading LoRA: {args.model}") |
|
network, weights_sd = lora.create_network_from_weights(1.0, args.model, vae, text_encoder, unet) |
|
|
|
|
|
has_te_weight = False |
|
for key in weights_sd.keys(): |
|
if 'lora_te' in key: |
|
has_te_weight = True |
|
break |
|
if not has_te_weight: |
|
logger.error("This LoRA does not have modules for Text Encoder, cannot interrogate / このLoRAはText Encoder向けのモジュールがないため調査できません") |
|
return |
|
del vae |
|
|
|
logger.info("loading tokenizer") |
|
if args.v2: |
|
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(V2_STABLE_DIFFUSION_PATH, subfolder="tokenizer") |
|
else: |
|
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(TOKENIZER_PATH) |
|
|
|
text_encoder.to(DEVICE, dtype=weights_dtype) |
|
text_encoder.eval() |
|
unet.to(DEVICE, dtype=weights_dtype) |
|
unet.eval() |
|
|
|
|
|
token_id_start = 0 |
|
token_id_end = max(tokenizer.all_special_ids) |
|
logger.info(f"interrogate tokens are: {token_id_start} to {token_id_end}") |
|
|
|
def get_all_embeddings(text_encoder): |
|
embs = [] |
|
with torch.no_grad(): |
|
for token_id in tqdm(range(token_id_start, token_id_end + 1, args.batch_size)): |
|
batch = [] |
|
for tid in range(token_id, min(token_id_end + 1, token_id + args.batch_size)): |
|
tokens = [tokenizer.bos_token_id, tid, tokenizer.eos_token_id] |
|
|
|
batch.append(tokens) |
|
|
|
|
|
|
|
batch = torch.tensor(batch).to(DEVICE) |
|
if args.clip_skip is None: |
|
encoder_hidden_states = text_encoder(batch)[0] |
|
else: |
|
enc_out = text_encoder(batch, output_hidden_states=True, return_dict=True) |
|
encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip] |
|
encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states) |
|
encoder_hidden_states = encoder_hidden_states.to("cpu") |
|
|
|
embs.extend(encoder_hidden_states) |
|
return torch.stack(embs) |
|
|
|
logger.info("get original text encoder embeddings.") |
|
orig_embs = get_all_embeddings(text_encoder) |
|
|
|
network.apply_to(text_encoder, unet, True, len(network.unet_loras) > 0) |
|
info = network.load_state_dict(weights_sd, strict=False) |
|
logger.info(f"Loading LoRA weights: {info}") |
|
|
|
network.to(DEVICE, dtype=weights_dtype) |
|
network.eval() |
|
|
|
del unet |
|
|
|
logger.info("You can ignore warning messages start with '_IncompatibleKeys' (LoRA model does not have alpha because trained by older script) / '_IncompatibleKeys'の警告は無視して構いません(以前のスクリプトで学習されたLoRAモデルのためalphaの定義がありません)") |
|
logger.info("get text encoder embeddings with lora.") |
|
lora_embs = get_all_embeddings(text_encoder) |
|
|
|
|
|
logger.info("comparing...") |
|
diffs = {} |
|
for i, (orig_emb, lora_emb) in enumerate(zip(orig_embs, tqdm(lora_embs))): |
|
diff = torch.mean(torch.abs(orig_emb - lora_emb)) |
|
|
|
diff = float(diff.detach().to('cpu').numpy()) |
|
diffs[token_id_start + i] = diff |
|
|
|
diffs_sorted = sorted(diffs.items(), key=lambda x: -x[1]) |
|
|
|
|
|
print("top 100:") |
|
for i, (token, diff) in enumerate(diffs_sorted[:100]): |
|
|
|
|
|
string = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens([token])) |
|
print(f"[{i:3d}]: {token:5d} {string:<20s}: {diff:.5f}") |
|
|
|
|
|
def setup_parser() -> argparse.ArgumentParser: |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument("--v2", action='store_true', |
|
help='load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む') |
|
parser.add_argument("--sd_model", type=str, default=None, |
|
help="Stable Diffusion model to load: ckpt or safetensors file / 読み込むSDのモデル、ckptまたはsafetensors") |
|
parser.add_argument("--model", type=str, default=None, |
|
help="LoRA model to interrogate: ckpt or safetensors file / 調査するLoRAモデル、ckptまたはsafetensors") |
|
parser.add_argument("--batch_size", type=int, default=16, |
|
help="batch size for processing with Text Encoder / Text Encoderで処理するときのバッチサイズ") |
|
parser.add_argument("--clip_skip", type=int, default=None, |
|
help="use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いる(nは1以上)") |
|
|
|
return parser |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = setup_parser() |
|
|
|
args = parser.parse_args() |
|
interrogate(args) |
|
|