private-model / lora-scripts /sd-scripts /tools /convert_diffusers20_original_sd.py
ACCC1380's picture
Upload lora-scripts/sd-scripts/tools/convert_diffusers20_original_sd.py with huggingface_hub
3275521 verified
raw
history blame
7.35 kB
# convert Diffusers v1.x/v2.0 model to original Stable Diffusion
import argparse
import os
import torch
from diffusers import StableDiffusionPipeline
import library.model_util as model_util
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
def convert(args):
# 引数を確認する
load_dtype = torch.float16 if args.fp16 else None
save_dtype = None
if args.fp16 or args.save_precision_as == "fp16":
save_dtype = torch.float16
elif args.bf16 or args.save_precision_as == "bf16":
save_dtype = torch.bfloat16
elif args.float or args.save_precision_as == "float":
save_dtype = torch.float
is_load_ckpt = os.path.isfile(args.model_to_load)
is_save_ckpt = len(os.path.splitext(args.model_to_save)[1]) > 0
assert not is_load_ckpt or args.v1 != args.v2, "v1 or v2 is required to load checkpoint / checkpointの読み込みにはv1/v2指定が必要です"
# assert (
# is_save_ckpt or args.reference_model is not None
# ), f"reference model is required to save as Diffusers / Diffusers形式での保存には参照モデルが必要です"
# モデルを読み込む
msg = "checkpoint" if is_load_ckpt else ("Diffusers" + (" as fp16" if args.fp16 else ""))
logger.info(f"loading {msg}: {args.model_to_load}")
if is_load_ckpt:
v2_model = args.v2
text_encoder, vae, unet = model_util.load_models_from_stable_diffusion_checkpoint(
v2_model, args.model_to_load, unet_use_linear_projection_in_v2=args.unet_use_linear_projection
)
else:
pipe = StableDiffusionPipeline.from_pretrained(
args.model_to_load, torch_dtype=load_dtype, tokenizer=None, safety_checker=None, variant=args.variant
)
text_encoder = pipe.text_encoder
vae = pipe.vae
unet = pipe.unet
if args.v1 == args.v2:
# 自動判定する
v2_model = unet.config.cross_attention_dim == 1024
logger.info("checking model version: model is " + ("v2" if v2_model else "v1"))
else:
v2_model = not args.v1
# 変換して保存する
msg = ("checkpoint" + ("" if save_dtype is None else f" in {save_dtype}")) if is_save_ckpt else "Diffusers"
logger.info(f"converting and saving as {msg}: {args.model_to_save}")
if is_save_ckpt:
original_model = args.model_to_load if is_load_ckpt else None
key_count = model_util.save_stable_diffusion_checkpoint(
v2_model,
args.model_to_save,
text_encoder,
unet,
original_model,
args.epoch,
args.global_step,
None if args.metadata is None else eval(args.metadata),
save_dtype=save_dtype,
vae=vae,
)
logger.info(f"model saved. total converted state_dict keys: {key_count}")
else:
logger.info(
f"copy scheduler/tokenizer config from: {args.reference_model if args.reference_model is not None else 'default model'}"
)
model_util.save_diffusers_checkpoint(
v2_model, args.model_to_save, text_encoder, unet, args.reference_model, vae, args.use_safetensors
)
logger.info("model saved.")
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument(
"--v1", action="store_true", help="load v1.x model (v1 or v2 is required to load checkpoint) / 1.xのモデルを読み込む"
)
parser.add_argument(
"--v2", action="store_true", help="load v2.0 model (v1 or v2 is required to load checkpoint) / 2.0のモデルを読み込む"
)
parser.add_argument(
"--unet_use_linear_projection",
action="store_true",
help="When saving v2 model as Diffusers, set U-Net config to `use_linear_projection=true` (to match stabilityai's model) / Diffusers形式でv2モデルを保存するときにU-Netの設定を`use_linear_projection=true`にする(stabilityaiのモデルと合わせる)",
)
parser.add_argument(
"--fp16",
action="store_true",
help="load as fp16 (Diffusers only) and save as fp16 (checkpoint only) / fp16形式で読み込み(Diffusers形式のみ対応)、保存する(checkpointのみ対応)",
)
parser.add_argument("--bf16", action="store_true", help="save as bf16 (checkpoint only) / bf16形式で保存する(checkpointのみ対応)")
parser.add_argument(
"--float", action="store_true", help="save as float (checkpoint only) / float(float32)形式で保存する(checkpointのみ対応)"
)
parser.add_argument(
"--save_precision_as",
type=str,
default="no",
choices=["fp16", "bf16", "float"],
help="save precision, do not specify with --fp16/--bf16/--float / 保存する精度、--fp16/--bf16/--floatと併用しないでください",
)
parser.add_argument("--epoch", type=int, default=0, help="epoch to write to checkpoint / checkpointに記録するepoch数の値")
parser.add_argument(
"--global_step", type=int, default=0, help="global_step to write to checkpoint / checkpointに記録するglobal_stepの値"
)
parser.add_argument(
"--metadata",
type=str,
default=None,
help='モデルに保存されるメタデータ、Pythonの辞書形式で指定 / metadata: metadata written in to the model in Python Dictionary. Example metadata: \'{"name": "model_name", "resolution": "512x512"}\'',
)
parser.add_argument(
"--variant",
type=str,
default=None,
help="読む込むDiffusersのvariantを指定する、例: fp16 / variant: Diffusers variant to load. Example: fp16",
)
parser.add_argument(
"--reference_model",
type=str,
default=None,
help="scheduler/tokenizerのコピー元Diffusersモデル、Diffusers形式で保存するときに使用される、省略時は`runwayml/stable-diffusion-v1-5` または `stabilityai/stable-diffusion-2-1` / reference Diffusers model to copy scheduler/tokenizer config from, used when saving as Diffusers format, default is `runwayml/stable-diffusion-v1-5` or `stabilityai/stable-diffusion-2-1`",
)
parser.add_argument(
"--use_safetensors",
action="store_true",
help="use safetensors format to save Diffusers model (checkpoint depends on the file extension) / Duffusersモデルをsafetensors形式で保存する(checkpointは拡張子で自動判定)",
)
parser.add_argument(
"model_to_load",
type=str,
default=None,
help="model to load: checkpoint file or Diffusers model's directory / 読み込むモデル、checkpointかDiffusers形式モデルのディレクトリ",
)
parser.add_argument(
"model_to_save",
type=str,
default=None,
help="model to save: checkpoint (with extension) or Diffusers model's directory (without extension) / 変換後のモデル、拡張子がある場合はcheckpoint、ない場合はDiffusesモデルとして保存",
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
convert(args)