|
import importlib |
|
import argparse |
|
import math |
|
import os |
|
import sys |
|
import random |
|
import time |
|
import json |
|
from multiprocessing import Value |
|
import toml |
|
|
|
from tqdm import tqdm |
|
|
|
import torch |
|
from library.device_utils import init_ipex, clean_memory_on_device |
|
|
|
init_ipex() |
|
|
|
from accelerate.utils import set_seed |
|
from diffusers import DDPMScheduler |
|
from library import deepspeed_utils, model_util |
|
|
|
import library.train_util as train_util |
|
from library.train_util import DreamBoothDataset |
|
import library.config_util as config_util |
|
from library.config_util import ( |
|
ConfigSanitizer, |
|
BlueprintGenerator, |
|
) |
|
import library.huggingface_util as huggingface_util |
|
import library.custom_train_functions as custom_train_functions |
|
from library.custom_train_functions import ( |
|
apply_snr_weight, |
|
get_weighted_text_embeddings, |
|
prepare_scheduler_for_custom_training, |
|
scale_v_prediction_loss_like_noise_prediction, |
|
add_v_prediction_like_loss, |
|
apply_debiased_estimation, |
|
apply_masked_loss, |
|
) |
|
from library.utils import setup_logging, add_logging_arguments |
|
|
|
setup_logging() |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class NetworkTrainer: |
|
def __init__(self): |
|
self.vae_scale_factor = 0.18215 |
|
self.is_sdxl = False |
|
|
|
|
|
def generate_step_logs( |
|
self, args: argparse.Namespace, current_loss, avr_loss, lr_scheduler, keys_scaled=None, mean_norm=None, maximum_norm=None |
|
): |
|
logs = {"loss/current": current_loss, "loss/average": avr_loss} |
|
|
|
if keys_scaled is not None: |
|
logs["max_norm/keys_scaled"] = keys_scaled |
|
logs["max_norm/average_key_norm"] = mean_norm |
|
logs["max_norm/max_key_norm"] = maximum_norm |
|
|
|
lrs = lr_scheduler.get_last_lr() |
|
|
|
if args.network_train_text_encoder_only or len(lrs) <= 2: |
|
if args.network_train_unet_only: |
|
logs["lr/unet"] = float(lrs[0]) |
|
elif args.network_train_text_encoder_only: |
|
logs["lr/textencoder"] = float(lrs[0]) |
|
else: |
|
logs["lr/textencoder"] = float(lrs[0]) |
|
logs["lr/unet"] = float(lrs[-1]) |
|
|
|
if ( |
|
args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower() |
|
): |
|
logs["lr/d*lr"] = ( |
|
lr_scheduler.optimizers[-1].param_groups[0]["d"] * lr_scheduler.optimizers[-1].param_groups[0]["lr"] |
|
) |
|
else: |
|
idx = 0 |
|
if not args.network_train_unet_only: |
|
logs["lr/textencoder"] = float(lrs[0]) |
|
idx = 1 |
|
|
|
for i in range(idx, len(lrs)): |
|
logs[f"lr/group{i}"] = float(lrs[i]) |
|
if args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower(): |
|
logs[f"lr/d*lr/group{i}"] = ( |
|
lr_scheduler.optimizers[-1].param_groups[i]["d"] * lr_scheduler.optimizers[-1].param_groups[i]["lr"] |
|
) |
|
|
|
return logs |
|
|
|
def assert_extra_args(self, args, train_dataset_group): |
|
pass |
|
|
|
def load_target_model(self, args, weight_dtype, accelerator): |
|
text_encoder, vae, unet, _ = train_util.load_target_model(args, weight_dtype, accelerator) |
|
return model_util.get_model_version_str_for_sd1_sd2(args.v2, args.v_parameterization), text_encoder, vae, unet |
|
|
|
def load_tokenizer(self, args): |
|
tokenizer = train_util.load_tokenizer(args) |
|
return tokenizer |
|
|
|
def is_text_encoder_outputs_cached(self, args): |
|
return False |
|
|
|
def is_train_text_encoder(self, args): |
|
return not args.network_train_unet_only and not self.is_text_encoder_outputs_cached(args) |
|
|
|
def cache_text_encoder_outputs_if_needed( |
|
self, args, accelerator, unet, vae, tokenizers, text_encoders, data_loader, weight_dtype |
|
): |
|
for t_enc in text_encoders: |
|
t_enc.to(accelerator.device, dtype=weight_dtype) |
|
|
|
def get_text_cond(self, args, accelerator, batch, tokenizers, text_encoders, weight_dtype): |
|
input_ids = batch["input_ids"].to(accelerator.device) |
|
encoder_hidden_states = train_util.get_hidden_states(args, input_ids, tokenizers[0], text_encoders[0], weight_dtype) |
|
return encoder_hidden_states |
|
|
|
def call_unet(self, args, accelerator, unet, noisy_latents, timesteps, text_conds, batch, weight_dtype): |
|
noise_pred = unet(noisy_latents, timesteps, text_conds).sample |
|
return noise_pred |
|
|
|
def all_reduce_network(self, accelerator, network): |
|
for param in network.parameters(): |
|
if param.grad is not None: |
|
param.grad = accelerator.reduce(param.grad, reduction="mean") |
|
|
|
def sample_images(self, accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet): |
|
train_util.sample_images(accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet) |
|
|
|
def train(self, args): |
|
session_id = random.randint(0, 2**32) |
|
training_started_at = time.time() |
|
train_util.verify_training_args(args) |
|
train_util.prepare_dataset_args(args, True) |
|
deepspeed_utils.prepare_deepspeed_args(args) |
|
setup_logging(args, reset=True) |
|
|
|
cache_latents = args.cache_latents |
|
use_dreambooth_method = args.in_json is None |
|
use_user_config = args.dataset_config is not None |
|
|
|
if args.seed is None: |
|
args.seed = random.randint(0, 2**32) |
|
set_seed(args.seed) |
|
|
|
|
|
tokenizer = self.load_tokenizer(args) |
|
tokenizers = tokenizer if isinstance(tokenizer, list) else [tokenizer] |
|
|
|
|
|
if args.dataset_class is None: |
|
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, args.masked_loss, True)) |
|
if use_user_config: |
|
logger.info(f"Loading dataset config from {args.dataset_config}") |
|
user_config = config_util.load_user_config(args.dataset_config) |
|
ignored = ["train_data_dir", "reg_data_dir", "in_json"] |
|
if any(getattr(args, attr) is not None for attr in ignored): |
|
logger.warning( |
|
"ignoring the following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format( |
|
", ".join(ignored) |
|
) |
|
) |
|
else: |
|
if use_dreambooth_method: |
|
logger.info("Using DreamBooth method.") |
|
user_config = { |
|
"datasets": [ |
|
{ |
|
"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs( |
|
args.train_data_dir, args.reg_data_dir |
|
) |
|
} |
|
] |
|
} |
|
else: |
|
logger.info("Training with captions.") |
|
user_config = { |
|
"datasets": [ |
|
{ |
|
"subsets": [ |
|
{ |
|
"image_dir": args.train_data_dir, |
|
"metadata_file": args.in_json, |
|
} |
|
] |
|
} |
|
] |
|
} |
|
|
|
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer) |
|
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group) |
|
else: |
|
|
|
train_dataset_group = train_util.load_arbitrary_dataset(args, tokenizer) |
|
|
|
current_epoch = Value("i", 0) |
|
current_step = Value("i", 0) |
|
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None |
|
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator) |
|
|
|
if args.debug_dataset: |
|
train_util.debug_dataset(train_dataset_group) |
|
return |
|
if len(train_dataset_group) == 0: |
|
logger.error( |
|
"No data found. Please verify arguments (train_data_dir must be the parent of folders with images) / 画像がありません。引数指定を確認してください(train_data_dirには画像があるフォルダではなく、画像があるフォルダの親フォルダを指定する必要があります)" |
|
) |
|
return |
|
|
|
if cache_latents: |
|
assert ( |
|
train_dataset_group.is_latent_cacheable() |
|
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません" |
|
|
|
self.assert_extra_args(args, train_dataset_group) |
|
|
|
|
|
logger.info("preparing accelerator") |
|
accelerator = train_util.prepare_accelerator(args) |
|
is_main_process = accelerator.is_main_process |
|
|
|
|
|
weight_dtype, save_dtype = train_util.prepare_dtype(args) |
|
vae_dtype = torch.float32 if args.no_half_vae else weight_dtype |
|
|
|
|
|
model_version, text_encoder, vae, unet = self.load_target_model(args, weight_dtype, accelerator) |
|
|
|
|
|
text_encoders = text_encoder if isinstance(text_encoder, list) else [text_encoder] |
|
|
|
|
|
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa) |
|
if torch.__version__ >= "2.0.0": |
|
vae.set_use_memory_efficient_attention_xformers(args.xformers) |
|
|
|
|
|
sys.path.append(os.path.dirname(__file__)) |
|
accelerator.print("import network module:", args.network_module) |
|
network_module = importlib.import_module(args.network_module) |
|
|
|
if args.base_weights is not None: |
|
|
|
for i, weight_path in enumerate(args.base_weights): |
|
if args.base_weights_multiplier is None or len(args.base_weights_multiplier) <= i: |
|
multiplier = 1.0 |
|
else: |
|
multiplier = args.base_weights_multiplier[i] |
|
|
|
accelerator.print(f"merging module: {weight_path} with multiplier {multiplier}") |
|
|
|
module, weights_sd = network_module.create_network_from_weights( |
|
multiplier, weight_path, vae, text_encoder, unet, for_inference=True |
|
) |
|
module.merge_to(text_encoder, unet, weights_sd, weight_dtype, accelerator.device if args.lowram else "cpu") |
|
|
|
accelerator.print(f"all weights merged: {', '.join(args.base_weights)}") |
|
|
|
|
|
if cache_latents: |
|
vae.to(accelerator.device, dtype=vae_dtype) |
|
vae.requires_grad_(False) |
|
vae.eval() |
|
with torch.no_grad(): |
|
train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process) |
|
vae.to("cpu") |
|
clean_memory_on_device(accelerator.device) |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
|
|
|
|
self.cache_text_encoder_outputs_if_needed( |
|
args, accelerator, unet, vae, tokenizers, text_encoders, train_dataset_group, weight_dtype |
|
) |
|
|
|
|
|
net_kwargs = {} |
|
if args.network_args is not None: |
|
for net_arg in args.network_args: |
|
key, value = net_arg.split("=") |
|
net_kwargs[key] = value |
|
|
|
|
|
if args.dim_from_weights: |
|
network, _ = network_module.create_network_from_weights(1, args.network_weights, vae, text_encoder, unet, **net_kwargs) |
|
else: |
|
if "dropout" not in net_kwargs: |
|
|
|
net_kwargs["dropout"] = args.network_dropout |
|
|
|
network = network_module.create_network( |
|
1.0, |
|
args.network_dim, |
|
args.network_alpha, |
|
vae, |
|
text_encoder, |
|
unet, |
|
neuron_dropout=args.network_dropout, |
|
**net_kwargs, |
|
) |
|
if network is None: |
|
return |
|
network_has_multiplier = hasattr(network, "set_multiplier") |
|
|
|
if hasattr(network, "prepare_network"): |
|
network.prepare_network(args) |
|
if args.scale_weight_norms and not hasattr(network, "apply_max_norm_regularization"): |
|
logger.warning( |
|
"warning: scale_weight_norms is specified but the network does not support it / scale_weight_normsが指定されていますが、ネットワークが対応していません" |
|
) |
|
args.scale_weight_norms = False |
|
|
|
train_unet = not args.network_train_text_encoder_only |
|
train_text_encoder = self.is_train_text_encoder(args) |
|
network.apply_to(text_encoder, unet, train_text_encoder, train_unet) |
|
|
|
if args.network_weights is not None: |
|
info = network.load_weights(args.network_weights) |
|
accelerator.print(f"load network weights from {args.network_weights}: {info}") |
|
|
|
if args.gradient_checkpointing: |
|
unet.enable_gradient_checkpointing() |
|
for t_enc in text_encoders: |
|
t_enc.gradient_checkpointing_enable() |
|
del t_enc |
|
network.enable_gradient_checkpointing() |
|
|
|
|
|
accelerator.print("prepare optimizer, data loader etc.") |
|
|
|
|
|
try: |
|
trainable_params = network.prepare_optimizer_params(args.text_encoder_lr, args.unet_lr, args.learning_rate) |
|
except TypeError: |
|
accelerator.print( |
|
"Deprecated: use prepare_optimizer_params(text_encoder_lr, unet_lr, learning_rate) instead of prepare_optimizer_params(text_encoder_lr, unet_lr)" |
|
) |
|
trainable_params = network.prepare_optimizer_params(args.text_encoder_lr, args.unet_lr) |
|
|
|
optimizer_name, optimizer_args, optimizer = train_util.get_optimizer(args, trainable_params) |
|
|
|
|
|
|
|
n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) |
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset_group, |
|
batch_size=1, |
|
shuffle=True, |
|
collate_fn=collator, |
|
num_workers=n_workers, |
|
persistent_workers=args.persistent_data_loader_workers, |
|
) |
|
|
|
|
|
if args.max_train_epochs is not None: |
|
args.max_train_steps = args.max_train_epochs * math.ceil( |
|
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps |
|
) |
|
accelerator.print( |
|
f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}" |
|
) |
|
|
|
|
|
train_dataset_group.set_max_train_steps(args.max_train_steps) |
|
|
|
|
|
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes) |
|
|
|
|
|
if args.full_fp16: |
|
assert ( |
|
args.mixed_precision == "fp16" |
|
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。" |
|
accelerator.print("enable full fp16 training.") |
|
network.to(weight_dtype) |
|
elif args.full_bf16: |
|
assert ( |
|
args.mixed_precision == "bf16" |
|
), "full_bf16 requires mixed precision='bf16' / full_bf16を使う場合はmixed_precision='bf16'を指定してください。" |
|
accelerator.print("enable full bf16 training.") |
|
network.to(weight_dtype) |
|
|
|
unet_weight_dtype = te_weight_dtype = weight_dtype |
|
|
|
if args.fp8_base: |
|
assert torch.__version__ >= "2.1.0", "fp8_base requires torch>=2.1.0 / fp8を使う場合はtorch>=2.1.0が必要です。" |
|
assert ( |
|
args.mixed_precision != "no" |
|
), "fp8_base requires mixed precision='fp16' or 'bf16' / fp8を使う場合はmixed_precision='fp16'または'bf16'が必要です。" |
|
accelerator.print("enable fp8 training.") |
|
unet_weight_dtype = torch.float8_e4m3fn |
|
te_weight_dtype = torch.float8_e4m3fn |
|
|
|
unet.requires_grad_(False) |
|
unet.to(dtype=unet_weight_dtype) |
|
for t_enc in text_encoders: |
|
t_enc.requires_grad_(False) |
|
|
|
|
|
if t_enc.device.type != "cpu": |
|
t_enc.to(dtype=te_weight_dtype) |
|
|
|
t_enc.text_model.embeddings.to(dtype=(weight_dtype if te_weight_dtype != weight_dtype else te_weight_dtype)) |
|
|
|
|
|
if args.deepspeed: |
|
ds_model = deepspeed_utils.prepare_deepspeed_model( |
|
args, |
|
unet=unet if train_unet else None, |
|
text_encoder1=text_encoders[0] if train_text_encoder else None, |
|
text_encoder2=text_encoders[1] if train_text_encoder and len(text_encoders) > 1 else None, |
|
network=network, |
|
) |
|
ds_model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
ds_model, optimizer, train_dataloader, lr_scheduler |
|
) |
|
training_model = ds_model |
|
else: |
|
if train_unet: |
|
unet = accelerator.prepare(unet) |
|
else: |
|
unet.to(accelerator.device, dtype=unet_weight_dtype) |
|
if train_text_encoder: |
|
if len(text_encoders) > 1: |
|
text_encoder = text_encoders = [accelerator.prepare(t_enc) for t_enc in text_encoders] |
|
else: |
|
text_encoder = accelerator.prepare(text_encoder) |
|
text_encoders = [text_encoder] |
|
else: |
|
pass |
|
|
|
network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
network, optimizer, train_dataloader, lr_scheduler |
|
) |
|
training_model = network |
|
|
|
if args.gradient_checkpointing: |
|
|
|
unet.train() |
|
for t_enc in text_encoders: |
|
t_enc.train() |
|
|
|
|
|
if train_text_encoder: |
|
t_enc.text_model.embeddings.requires_grad_(True) |
|
|
|
else: |
|
unet.eval() |
|
for t_enc in text_encoders: |
|
t_enc.eval() |
|
|
|
del t_enc |
|
|
|
accelerator.unwrap_model(network).prepare_grad_etc(text_encoder, unet) |
|
|
|
if not cache_latents: |
|
vae.requires_grad_(False) |
|
vae.eval() |
|
vae.to(accelerator.device, dtype=vae_dtype) |
|
|
|
|
|
if args.full_fp16: |
|
train_util.patch_accelerator_for_fp16_training(accelerator) |
|
|
|
|
|
def save_model_hook(models, weights, output_dir): |
|
|
|
|
|
if accelerator.is_main_process or args.deepspeed: |
|
remove_indices = [] |
|
for i, model in enumerate(models): |
|
if not isinstance(model, type(accelerator.unwrap_model(network))): |
|
remove_indices.append(i) |
|
for i in reversed(remove_indices): |
|
if len(weights) > i: |
|
weights.pop(i) |
|
|
|
|
|
def load_model_hook(models, input_dir): |
|
|
|
remove_indices = [] |
|
for i, model in enumerate(models): |
|
if not isinstance(model, type(accelerator.unwrap_model(network))): |
|
remove_indices.append(i) |
|
for i in reversed(remove_indices): |
|
models.pop(i) |
|
|
|
|
|
accelerator.register_save_state_pre_hook(save_model_hook) |
|
accelerator.register_load_state_pre_hook(load_model_hook) |
|
|
|
|
|
train_util.resume_from_local_or_hf_if_specified(accelerator, args) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0): |
|
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1 |
|
|
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
accelerator.print("running training / 学習開始") |
|
accelerator.print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}") |
|
accelerator.print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}") |
|
accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") |
|
accelerator.print(f" num epochs / epoch数: {num_train_epochs}") |
|
accelerator.print( |
|
f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}" |
|
) |
|
|
|
accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") |
|
accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") |
|
|
|
|
|
metadata = { |
|
"ss_session_id": session_id, |
|
"ss_training_started_at": training_started_at, |
|
"ss_output_name": args.output_name, |
|
"ss_learning_rate": args.learning_rate, |
|
"ss_text_encoder_lr": args.text_encoder_lr, |
|
"ss_unet_lr": args.unet_lr, |
|
"ss_num_train_images": train_dataset_group.num_train_images, |
|
"ss_num_reg_images": train_dataset_group.num_reg_images, |
|
"ss_num_batches_per_epoch": len(train_dataloader), |
|
"ss_num_epochs": num_train_epochs, |
|
"ss_gradient_checkpointing": args.gradient_checkpointing, |
|
"ss_gradient_accumulation_steps": args.gradient_accumulation_steps, |
|
"ss_max_train_steps": args.max_train_steps, |
|
"ss_lr_warmup_steps": args.lr_warmup_steps, |
|
"ss_lr_scheduler": args.lr_scheduler, |
|
"ss_network_module": args.network_module, |
|
"ss_network_dim": args.network_dim, |
|
"ss_network_alpha": args.network_alpha, |
|
"ss_network_dropout": args.network_dropout, |
|
"ss_mixed_precision": args.mixed_precision, |
|
"ss_full_fp16": bool(args.full_fp16), |
|
"ss_v2": bool(args.v2), |
|
"ss_base_model_version": model_version, |
|
"ss_clip_skip": args.clip_skip, |
|
"ss_max_token_length": args.max_token_length, |
|
"ss_cache_latents": bool(args.cache_latents), |
|
"ss_seed": args.seed, |
|
"ss_lowram": args.lowram, |
|
"ss_noise_offset": args.noise_offset, |
|
"ss_multires_noise_iterations": args.multires_noise_iterations, |
|
"ss_multires_noise_discount": args.multires_noise_discount, |
|
"ss_adaptive_noise_scale": args.adaptive_noise_scale, |
|
"ss_zero_terminal_snr": args.zero_terminal_snr, |
|
"ss_training_comment": args.training_comment, |
|
"ss_sd_scripts_commit_hash": train_util.get_git_revision_hash(), |
|
"ss_optimizer": optimizer_name + (f"({optimizer_args})" if len(optimizer_args) > 0 else ""), |
|
"ss_max_grad_norm": args.max_grad_norm, |
|
"ss_caption_dropout_rate": args.caption_dropout_rate, |
|
"ss_caption_dropout_every_n_epochs": args.caption_dropout_every_n_epochs, |
|
"ss_caption_tag_dropout_rate": args.caption_tag_dropout_rate, |
|
"ss_face_crop_aug_range": args.face_crop_aug_range, |
|
"ss_prior_loss_weight": args.prior_loss_weight, |
|
"ss_min_snr_gamma": args.min_snr_gamma, |
|
"ss_scale_weight_norms": args.scale_weight_norms, |
|
"ss_ip_noise_gamma": args.ip_noise_gamma, |
|
"ss_debiased_estimation": bool(args.debiased_estimation_loss), |
|
"ss_noise_offset_random_strength": args.noise_offset_random_strength, |
|
"ss_ip_noise_gamma_random_strength": args.ip_noise_gamma_random_strength, |
|
"ss_loss_type": args.loss_type, |
|
"ss_huber_schedule": args.huber_schedule, |
|
"ss_huber_c": args.huber_c, |
|
} |
|
|
|
if use_user_config: |
|
|
|
|
|
|
|
datasets_metadata = [] |
|
tag_frequency = {} |
|
dataset_dirs_info = {} |
|
|
|
for dataset in train_dataset_group.datasets: |
|
is_dreambooth_dataset = isinstance(dataset, DreamBoothDataset) |
|
dataset_metadata = { |
|
"is_dreambooth": is_dreambooth_dataset, |
|
"batch_size_per_device": dataset.batch_size, |
|
"num_train_images": dataset.num_train_images, |
|
"num_reg_images": dataset.num_reg_images, |
|
"resolution": (dataset.width, dataset.height), |
|
"enable_bucket": bool(dataset.enable_bucket), |
|
"min_bucket_reso": dataset.min_bucket_reso, |
|
"max_bucket_reso": dataset.max_bucket_reso, |
|
"tag_frequency": dataset.tag_frequency, |
|
"bucket_info": dataset.bucket_info, |
|
} |
|
|
|
subsets_metadata = [] |
|
for subset in dataset.subsets: |
|
subset_metadata = { |
|
"img_count": subset.img_count, |
|
"num_repeats": subset.num_repeats, |
|
"color_aug": bool(subset.color_aug), |
|
"flip_aug": bool(subset.flip_aug), |
|
"random_crop": bool(subset.random_crop), |
|
"shuffle_caption": bool(subset.shuffle_caption), |
|
"keep_tokens": subset.keep_tokens, |
|
"keep_tokens_separator": subset.keep_tokens_separator, |
|
"secondary_separator": subset.secondary_separator, |
|
"enable_wildcard": bool(subset.enable_wildcard), |
|
"caption_prefix": subset.caption_prefix, |
|
"caption_suffix": subset.caption_suffix, |
|
} |
|
|
|
image_dir_or_metadata_file = None |
|
if subset.image_dir: |
|
image_dir = os.path.basename(subset.image_dir) |
|
subset_metadata["image_dir"] = image_dir |
|
image_dir_or_metadata_file = image_dir |
|
|
|
if is_dreambooth_dataset: |
|
subset_metadata["class_tokens"] = subset.class_tokens |
|
subset_metadata["is_reg"] = subset.is_reg |
|
if subset.is_reg: |
|
image_dir_or_metadata_file = None |
|
else: |
|
metadata_file = os.path.basename(subset.metadata_file) |
|
subset_metadata["metadata_file"] = metadata_file |
|
image_dir_or_metadata_file = metadata_file |
|
|
|
subsets_metadata.append(subset_metadata) |
|
|
|
|
|
|
|
if image_dir_or_metadata_file is not None: |
|
|
|
v = image_dir_or_metadata_file |
|
i = 2 |
|
while v in dataset_dirs_info: |
|
v = image_dir_or_metadata_file + f" ({i})" |
|
i += 1 |
|
image_dir_or_metadata_file = v |
|
|
|
dataset_dirs_info[image_dir_or_metadata_file] = { |
|
"n_repeats": subset.num_repeats, |
|
"img_count": subset.img_count, |
|
} |
|
|
|
dataset_metadata["subsets"] = subsets_metadata |
|
datasets_metadata.append(dataset_metadata) |
|
|
|
|
|
for ds_dir_name, ds_freq_for_dir in dataset.tag_frequency.items(): |
|
|
|
|
|
|
|
if ds_dir_name in tag_frequency: |
|
continue |
|
tag_frequency[ds_dir_name] = ds_freq_for_dir |
|
|
|
metadata["ss_datasets"] = json.dumps(datasets_metadata) |
|
metadata["ss_tag_frequency"] = json.dumps(tag_frequency) |
|
metadata["ss_dataset_dirs"] = json.dumps(dataset_dirs_info) |
|
else: |
|
|
|
assert ( |
|
len(train_dataset_group.datasets) == 1 |
|
), f"There should be a single dataset but {len(train_dataset_group.datasets)} found. This seems to be a bug. / データセットは1個だけ存在するはずですが、実際には{len(train_dataset_group.datasets)}個でした。プログラムのバグかもしれません。" |
|
|
|
dataset = train_dataset_group.datasets[0] |
|
|
|
dataset_dirs_info = {} |
|
reg_dataset_dirs_info = {} |
|
if use_dreambooth_method: |
|
for subset in dataset.subsets: |
|
info = reg_dataset_dirs_info if subset.is_reg else dataset_dirs_info |
|
info[os.path.basename(subset.image_dir)] = {"n_repeats": subset.num_repeats, "img_count": subset.img_count} |
|
else: |
|
for subset in dataset.subsets: |
|
dataset_dirs_info[os.path.basename(subset.metadata_file)] = { |
|
"n_repeats": subset.num_repeats, |
|
"img_count": subset.img_count, |
|
} |
|
|
|
metadata.update( |
|
{ |
|
"ss_batch_size_per_device": args.train_batch_size, |
|
"ss_total_batch_size": total_batch_size, |
|
"ss_resolution": args.resolution, |
|
"ss_color_aug": bool(args.color_aug), |
|
"ss_flip_aug": bool(args.flip_aug), |
|
"ss_random_crop": bool(args.random_crop), |
|
"ss_shuffle_caption": bool(args.shuffle_caption), |
|
"ss_enable_bucket": bool(dataset.enable_bucket), |
|
"ss_bucket_no_upscale": bool(dataset.bucket_no_upscale), |
|
"ss_min_bucket_reso": dataset.min_bucket_reso, |
|
"ss_max_bucket_reso": dataset.max_bucket_reso, |
|
"ss_keep_tokens": args.keep_tokens, |
|
"ss_dataset_dirs": json.dumps(dataset_dirs_info), |
|
"ss_reg_dataset_dirs": json.dumps(reg_dataset_dirs_info), |
|
"ss_tag_frequency": json.dumps(dataset.tag_frequency), |
|
"ss_bucket_info": json.dumps(dataset.bucket_info), |
|
} |
|
) |
|
|
|
|
|
if args.network_args: |
|
metadata["ss_network_args"] = json.dumps(net_kwargs) |
|
|
|
|
|
if args.pretrained_model_name_or_path is not None: |
|
sd_model_name = args.pretrained_model_name_or_path |
|
if os.path.exists(sd_model_name): |
|
metadata["ss_sd_model_hash"] = train_util.model_hash(sd_model_name) |
|
metadata["ss_new_sd_model_hash"] = train_util.calculate_sha256(sd_model_name) |
|
sd_model_name = os.path.basename(sd_model_name) |
|
metadata["ss_sd_model_name"] = sd_model_name |
|
|
|
if args.vae is not None: |
|
vae_name = args.vae |
|
if os.path.exists(vae_name): |
|
metadata["ss_vae_hash"] = train_util.model_hash(vae_name) |
|
metadata["ss_new_vae_hash"] = train_util.calculate_sha256(vae_name) |
|
vae_name = os.path.basename(vae_name) |
|
metadata["ss_vae_name"] = vae_name |
|
|
|
metadata = {k: str(v) for k, v in metadata.items()} |
|
|
|
|
|
minimum_metadata = {} |
|
for key in train_util.SS_METADATA_MINIMUM_KEYS: |
|
if key in metadata: |
|
minimum_metadata[key] = metadata[key] |
|
|
|
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps") |
|
global_step = 0 |
|
|
|
noise_scheduler = DDPMScheduler( |
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False |
|
) |
|
prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device) |
|
if args.zero_terminal_snr: |
|
custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler) |
|
|
|
if accelerator.is_main_process: |
|
init_kwargs = {} |
|
if args.wandb_run_name: |
|
init_kwargs["wandb"] = {"name": args.wandb_run_name} |
|
if args.log_tracker_config is not None: |
|
init_kwargs = toml.load(args.log_tracker_config) |
|
accelerator.init_trackers( |
|
"network_train" if args.log_tracker_name is None else args.log_tracker_name, init_kwargs=init_kwargs |
|
) |
|
|
|
loss_recorder = train_util.LossRecorder() |
|
del train_dataset_group |
|
|
|
|
|
if hasattr(accelerator.unwrap_model(network), "on_step_start"): |
|
on_step_start = accelerator.unwrap_model(network).on_step_start |
|
else: |
|
on_step_start = lambda *args, **kwargs: None |
|
|
|
|
|
def save_model(ckpt_name, unwrapped_nw, steps, epoch_no, force_sync_upload=False): |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
ckpt_file = os.path.join(args.output_dir, ckpt_name) |
|
|
|
accelerator.print(f"\nsaving checkpoint: {ckpt_file}") |
|
metadata["ss_training_finished_at"] = str(time.time()) |
|
metadata["ss_steps"] = str(steps) |
|
metadata["ss_epoch"] = str(epoch_no) |
|
|
|
metadata_to_save = minimum_metadata if args.no_metadata else metadata |
|
sai_metadata = train_util.get_sai_model_spec(None, args, self.is_sdxl, True, False) |
|
metadata_to_save.update(sai_metadata) |
|
|
|
unwrapped_nw.save_weights(ckpt_file, save_dtype, metadata_to_save) |
|
if args.huggingface_repo_id is not None: |
|
huggingface_util.upload(args, ckpt_file, "/" + ckpt_name, force_sync_upload=force_sync_upload) |
|
|
|
def remove_model(old_ckpt_name): |
|
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name) |
|
if os.path.exists(old_ckpt_file): |
|
accelerator.print(f"removing old checkpoint: {old_ckpt_file}") |
|
os.remove(old_ckpt_file) |
|
|
|
|
|
self.sample_images(accelerator, args, 0, global_step, accelerator.device, vae, tokenizer, text_encoder, unet) |
|
|
|
|
|
for epoch in range(num_train_epochs): |
|
accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}") |
|
current_epoch.value = epoch + 1 |
|
|
|
metadata["ss_epoch"] = str(epoch + 1) |
|
|
|
accelerator.unwrap_model(network).on_epoch_start(text_encoder, unet) |
|
|
|
for step, batch in enumerate(train_dataloader): |
|
current_step.value = global_step |
|
with accelerator.accumulate(training_model): |
|
on_step_start(text_encoder, unet) |
|
|
|
if "latents" in batch and batch["latents"] is not None: |
|
latents = batch["latents"].to(accelerator.device).to(dtype=weight_dtype) |
|
else: |
|
with torch.no_grad(): |
|
|
|
latents = vae.encode(batch["images"].to(dtype=vae_dtype)).latent_dist.sample().to(dtype=weight_dtype) |
|
|
|
|
|
if torch.any(torch.isnan(latents)): |
|
accelerator.print("NaN found in latents, replacing with zeros") |
|
latents = torch.nan_to_num(latents, 0, out=latents) |
|
latents = latents * self.vae_scale_factor |
|
|
|
|
|
if network_has_multiplier: |
|
multipliers = batch["network_multipliers"] |
|
|
|
if torch.all(multipliers == multipliers[0]): |
|
multipliers = multipliers[0].item() |
|
else: |
|
raise NotImplementedError("multipliers for each sample is not supported yet") |
|
|
|
accelerator.unwrap_model(network).set_multiplier(multipliers) |
|
|
|
with torch.set_grad_enabled(train_text_encoder), accelerator.autocast(): |
|
|
|
if args.weighted_captions: |
|
text_encoder_conds = get_weighted_text_embeddings( |
|
tokenizer, |
|
text_encoder, |
|
batch["captions"], |
|
accelerator.device, |
|
args.max_token_length // 75 if args.max_token_length else 1, |
|
clip_skip=args.clip_skip, |
|
) |
|
else: |
|
text_encoder_conds = self.get_text_cond( |
|
args, accelerator, batch, tokenizers, text_encoders, weight_dtype |
|
) |
|
|
|
|
|
|
|
noise, noisy_latents, timesteps, huber_c = train_util.get_noise_noisy_latents_and_timesteps( |
|
args, noise_scheduler, latents |
|
) |
|
|
|
|
|
if args.gradient_checkpointing: |
|
for x in noisy_latents: |
|
x.requires_grad_(True) |
|
for t in text_encoder_conds: |
|
t.requires_grad_(True) |
|
|
|
|
|
with accelerator.autocast(): |
|
noise_pred = self.call_unet( |
|
args, |
|
accelerator, |
|
unet, |
|
noisy_latents.requires_grad_(train_unet), |
|
timesteps, |
|
text_encoder_conds, |
|
batch, |
|
weight_dtype, |
|
) |
|
|
|
if args.v_parameterization: |
|
|
|
target = noise_scheduler.get_velocity(latents, noise, timesteps) |
|
else: |
|
target = noise |
|
|
|
loss = train_util.conditional_loss( |
|
noise_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c |
|
) |
|
if args.masked_loss: |
|
loss = apply_masked_loss(loss, batch) |
|
loss = loss.mean([1, 2, 3]) |
|
|
|
loss_weights = batch["loss_weights"] |
|
loss = loss * loss_weights |
|
|
|
if args.min_snr_gamma: |
|
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma, args.v_parameterization) |
|
if args.scale_v_pred_loss_like_noise_pred: |
|
loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler) |
|
if args.v_pred_like_loss: |
|
loss = add_v_prediction_like_loss(loss, timesteps, noise_scheduler, args.v_pred_like_loss) |
|
if args.debiased_estimation_loss: |
|
loss = apply_debiased_estimation(loss, timesteps, noise_scheduler) |
|
|
|
loss = loss.mean() |
|
|
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients: |
|
self.all_reduce_network(accelerator, network) |
|
if args.max_grad_norm != 0.0: |
|
params_to_clip = accelerator.unwrap_model(network).get_trainable_params() |
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) |
|
|
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad(set_to_none=True) |
|
|
|
if args.scale_weight_norms: |
|
keys_scaled, mean_norm, maximum_norm = accelerator.unwrap_model(network).apply_max_norm_regularization( |
|
args.scale_weight_norms, accelerator.device |
|
) |
|
max_mean_logs = {"Keys Scaled": keys_scaled, "Average key norm": mean_norm} |
|
else: |
|
keys_scaled, mean_norm, maximum_norm = None, None, None |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
self.sample_images(accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet) |
|
|
|
|
|
if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0: |
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, global_step) |
|
save_model(ckpt_name, accelerator.unwrap_model(network), global_step, epoch) |
|
|
|
if args.save_state: |
|
train_util.save_and_remove_state_stepwise(args, accelerator, global_step) |
|
|
|
remove_step_no = train_util.get_remove_step_no(args, global_step) |
|
if remove_step_no is not None: |
|
remove_ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, remove_step_no) |
|
remove_model(remove_ckpt_name) |
|
|
|
current_loss = loss.detach().item() |
|
loss_recorder.add(epoch=epoch, step=step, loss=current_loss) |
|
avr_loss: float = loss_recorder.moving_average |
|
logs = {"avr_loss": avr_loss} |
|
progress_bar.set_postfix(**logs) |
|
|
|
if args.scale_weight_norms: |
|
progress_bar.set_postfix(**{**max_mean_logs, **logs}) |
|
|
|
if args.logging_dir is not None: |
|
logs = self.generate_step_logs(args, current_loss, avr_loss, lr_scheduler, keys_scaled, mean_norm, maximum_norm) |
|
accelerator.log(logs, step=global_step) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
if args.logging_dir is not None: |
|
logs = {"loss/epoch": loss_recorder.moving_average} |
|
accelerator.log(logs, step=epoch + 1) |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
|
|
if args.save_every_n_epochs is not None: |
|
saving = (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs |
|
if is_main_process and saving: |
|
ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, epoch + 1) |
|
save_model(ckpt_name, accelerator.unwrap_model(network), global_step, epoch + 1) |
|
|
|
remove_epoch_no = train_util.get_remove_epoch_no(args, epoch + 1) |
|
if remove_epoch_no is not None: |
|
remove_ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, remove_epoch_no) |
|
remove_model(remove_ckpt_name) |
|
|
|
if args.save_state: |
|
train_util.save_and_remove_state_on_epoch_end(args, accelerator, epoch + 1) |
|
|
|
self.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet) |
|
|
|
|
|
|
|
|
|
metadata["ss_training_finished_at"] = str(time.time()) |
|
|
|
if is_main_process: |
|
network = accelerator.unwrap_model(network) |
|
|
|
accelerator.end_training() |
|
|
|
if is_main_process and (args.save_state or args.save_state_on_train_end): |
|
train_util.save_state_on_train_end(args, accelerator) |
|
|
|
if is_main_process: |
|
ckpt_name = train_util.get_last_ckpt_name(args, "." + args.save_model_as) |
|
save_model(ckpt_name, network, global_step, num_train_epochs, force_sync_upload=True) |
|
|
|
logger.info("model saved.") |
|
|
|
|
|
def setup_parser() -> argparse.ArgumentParser: |
|
parser = argparse.ArgumentParser() |
|
|
|
add_logging_arguments(parser) |
|
train_util.add_sd_models_arguments(parser) |
|
train_util.add_dataset_arguments(parser, True, True, True) |
|
train_util.add_training_arguments(parser, True) |
|
train_util.add_masked_loss_arguments(parser) |
|
deepspeed_utils.add_deepspeed_arguments(parser) |
|
train_util.add_optimizer_arguments(parser) |
|
config_util.add_config_arguments(parser) |
|
custom_train_functions.add_custom_train_arguments(parser) |
|
|
|
parser.add_argument( |
|
"--no_metadata", action="store_true", help="do not save metadata in output model / メタデータを出力先モデルに保存しない" |
|
) |
|
parser.add_argument( |
|
"--save_model_as", |
|
type=str, |
|
default="safetensors", |
|
choices=[None, "ckpt", "pt", "safetensors"], |
|
help="format to save the model (default is .safetensors) / モデル保存時の形式(デフォルトはsafetensors)", |
|
) |
|
|
|
parser.add_argument("--unet_lr", type=float, default=None, help="learning rate for U-Net / U-Netの学習率") |
|
parser.add_argument("--text_encoder_lr", type=float, default=None, help="learning rate for Text Encoder / Text Encoderの学習率") |
|
|
|
parser.add_argument( |
|
"--network_weights", type=str, default=None, help="pretrained weights for network / 学習するネットワークの初期重み" |
|
) |
|
parser.add_argument( |
|
"--network_module", type=str, default=None, help="network module to train / 学習対象のネットワークのモジュール" |
|
) |
|
parser.add_argument( |
|
"--network_dim", |
|
type=int, |
|
default=None, |
|
help="network dimensions (depends on each network) / モジュールの次元数(ネットワークにより定義は異なります)", |
|
) |
|
parser.add_argument( |
|
"--network_alpha", |
|
type=float, |
|
default=1, |
|
help="alpha for LoRA weight scaling, default 1 (same as network_dim for same behavior as old version) / LoRaの重み調整のalpha値、デフォルト1(旧バージョンと同じ動作をするにはnetwork_dimと同じ値を指定)", |
|
) |
|
parser.add_argument( |
|
"--network_dropout", |
|
type=float, |
|
default=None, |
|
help="Drops neurons out of training every step (0 or None is default behavior (no dropout), 1 would drop all neurons) / 訓練時に毎ステップでニューロンをdropする(0またはNoneはdropoutなし、1は全ニューロンをdropout)", |
|
) |
|
parser.add_argument( |
|
"--network_args", |
|
type=str, |
|
default=None, |
|
nargs="*", |
|
help="additional arguments for network (key=value) / ネットワークへの追加の引数", |
|
) |
|
parser.add_argument( |
|
"--network_train_unet_only", action="store_true", help="only training U-Net part / U-Net関連部分のみ学習する" |
|
) |
|
parser.add_argument( |
|
"--network_train_text_encoder_only", |
|
action="store_true", |
|
help="only training Text Encoder part / Text Encoder関連部分のみ学習する", |
|
) |
|
parser.add_argument( |
|
"--training_comment", |
|
type=str, |
|
default=None, |
|
help="arbitrary comment string stored in metadata / メタデータに記録する任意のコメント文字列", |
|
) |
|
parser.add_argument( |
|
"--dim_from_weights", |
|
action="store_true", |
|
help="automatically determine dim (rank) from network_weights / dim (rank)をnetwork_weightsで指定した重みから自動で決定する", |
|
) |
|
parser.add_argument( |
|
"--scale_weight_norms", |
|
type=float, |
|
default=None, |
|
help="Scale the weight of each key pair to help prevent overtraing via exploding gradients. (1 is a good starting point) / 重みの値をスケーリングして勾配爆発を防ぐ(1が初期値としては適当)", |
|
) |
|
parser.add_argument( |
|
"--base_weights", |
|
type=str, |
|
default=None, |
|
nargs="*", |
|
help="network weights to merge into the model before training / 学習前にあらかじめモデルにマージするnetworkの重みファイル", |
|
) |
|
parser.add_argument( |
|
"--base_weights_multiplier", |
|
type=float, |
|
default=None, |
|
nargs="*", |
|
help="multiplier for network weights to merge into the model before training / 学習前にあらかじめモデルにマージするnetworkの重みの倍率", |
|
) |
|
parser.add_argument( |
|
"--no_half_vae", |
|
action="store_true", |
|
help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う", |
|
) |
|
return parser |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = setup_parser() |
|
|
|
args = parser.parse_args() |
|
train_util.verify_command_line_training_args(args) |
|
args = train_util.read_config_from_file(args, parser) |
|
|
|
trainer = NetworkTrainer() |
|
trainer.train(args) |
|
|