Upload lora-scripts/sd-scripts/library/slicing_vae.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/library/slicing_vae.py
ADDED
@@ -0,0 +1,682 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from Diffusers to reduce VRAM usage
|
2 |
+
|
3 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
from dataclasses import dataclass
|
17 |
+
from typing import Optional, Tuple, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
|
23 |
+
|
24 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
25 |
+
from diffusers.models.modeling_utils import ModelMixin
|
26 |
+
from diffusers.models.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block
|
27 |
+
from diffusers.models.vae import DecoderOutput, DiagonalGaussianDistribution
|
28 |
+
from diffusers.models.autoencoder_kl import AutoencoderKLOutput
|
29 |
+
from .utils import setup_logging
|
30 |
+
setup_logging()
|
31 |
+
import logging
|
32 |
+
logger = logging.getLogger(__name__)
|
33 |
+
|
34 |
+
def slice_h(x, num_slices):
|
35 |
+
# slice with pad 1 both sides: to eliminate side effect of padding of conv2d
|
36 |
+
# Conv2dのpaddingの副作用を排除するために、両側にpad 1しながらHをスライスする
|
37 |
+
# NCHWでもNHWCでもどちらでも動く
|
38 |
+
size = (x.shape[2] + num_slices - 1) // num_slices
|
39 |
+
sliced = []
|
40 |
+
for i in range(num_slices):
|
41 |
+
if i == 0:
|
42 |
+
sliced.append(x[:, :, : size + 1, :])
|
43 |
+
else:
|
44 |
+
end = size * (i + 1) + 1
|
45 |
+
if x.shape[2] - end < 3: # if the last slice is too small, use the rest of the tensor 最後が細すぎるとconv2dできないので全部使う
|
46 |
+
end = x.shape[2]
|
47 |
+
sliced.append(x[:, :, size * i - 1 : end, :])
|
48 |
+
if end >= x.shape[2]:
|
49 |
+
break
|
50 |
+
return sliced
|
51 |
+
|
52 |
+
|
53 |
+
def cat_h(sliced):
|
54 |
+
# padding分を除いて結合する
|
55 |
+
cat = []
|
56 |
+
for i, x in enumerate(sliced):
|
57 |
+
if i == 0:
|
58 |
+
cat.append(x[:, :, :-1, :])
|
59 |
+
elif i == len(sliced) - 1:
|
60 |
+
cat.append(x[:, :, 1:, :])
|
61 |
+
else:
|
62 |
+
cat.append(x[:, :, 1:-1, :])
|
63 |
+
del x
|
64 |
+
x = torch.cat(cat, dim=2)
|
65 |
+
return x
|
66 |
+
|
67 |
+
|
68 |
+
def resblock_forward(_self, num_slices, input_tensor, temb, **kwargs):
|
69 |
+
assert _self.upsample is None and _self.downsample is None
|
70 |
+
assert _self.norm1.num_groups == _self.norm2.num_groups
|
71 |
+
assert temb is None
|
72 |
+
|
73 |
+
# make sure norms are on cpu
|
74 |
+
org_device = input_tensor.device
|
75 |
+
cpu_device = torch.device("cpu")
|
76 |
+
_self.norm1.to(cpu_device)
|
77 |
+
_self.norm2.to(cpu_device)
|
78 |
+
|
79 |
+
# GroupNormがCPUでfp16で動かない対策
|
80 |
+
org_dtype = input_tensor.dtype
|
81 |
+
if org_dtype == torch.float16:
|
82 |
+
_self.norm1.to(torch.float32)
|
83 |
+
_self.norm2.to(torch.float32)
|
84 |
+
|
85 |
+
# すべてのテンソルをCPUに移動する
|
86 |
+
input_tensor = input_tensor.to(cpu_device)
|
87 |
+
hidden_states = input_tensor
|
88 |
+
|
89 |
+
# どうもこれは結果が異なるようだ……
|
90 |
+
# def sliced_norm1(norm, x):
|
91 |
+
# num_div = 4 if up_block_idx <= 2 else x.shape[1] // norm.num_groups
|
92 |
+
# sliced_tensor = torch.chunk(x, num_div, dim=1)
|
93 |
+
# sliced_weight = torch.chunk(norm.weight, num_div, dim=0)
|
94 |
+
# sliced_bias = torch.chunk(norm.bias, num_div, dim=0)
|
95 |
+
# logger.info(sliced_tensor[0].shape, num_div, sliced_weight[0].shape, sliced_bias[0].shape)
|
96 |
+
# normed_tensor = []
|
97 |
+
# for i in range(num_div):
|
98 |
+
# n = torch.group_norm(sliced_tensor[i], norm.num_groups, sliced_weight[i], sliced_bias[i], norm.eps)
|
99 |
+
# normed_tensor.append(n)
|
100 |
+
# del n
|
101 |
+
# x = torch.cat(normed_tensor, dim=1)
|
102 |
+
# return num_div, x
|
103 |
+
|
104 |
+
# normを分割すると結果が変わるので、ここだけは分割しない。GPUで計算するとVRAMが足りなくなるので、CPUで計算する。幸いCPUでもそこまで遅くない
|
105 |
+
if org_dtype == torch.float16:
|
106 |
+
hidden_states = hidden_states.to(torch.float32)
|
107 |
+
hidden_states = _self.norm1(hidden_states) # run on cpu
|
108 |
+
if org_dtype == torch.float16:
|
109 |
+
hidden_states = hidden_states.to(torch.float16)
|
110 |
+
|
111 |
+
sliced = slice_h(hidden_states, num_slices)
|
112 |
+
del hidden_states
|
113 |
+
|
114 |
+
for i in range(len(sliced)):
|
115 |
+
x = sliced[i]
|
116 |
+
sliced[i] = None
|
117 |
+
|
118 |
+
# 計算する部分だけGPUに移動する、以下同様
|
119 |
+
x = x.to(org_device)
|
120 |
+
x = _self.nonlinearity(x)
|
121 |
+
x = _self.conv1(x)
|
122 |
+
x = x.to(cpu_device)
|
123 |
+
sliced[i] = x
|
124 |
+
del x
|
125 |
+
|
126 |
+
hidden_states = cat_h(sliced)
|
127 |
+
del sliced
|
128 |
+
|
129 |
+
if org_dtype == torch.float16:
|
130 |
+
hidden_states = hidden_states.to(torch.float32)
|
131 |
+
hidden_states = _self.norm2(hidden_states) # run on cpu
|
132 |
+
if org_dtype == torch.float16:
|
133 |
+
hidden_states = hidden_states.to(torch.float16)
|
134 |
+
|
135 |
+
sliced = slice_h(hidden_states, num_slices)
|
136 |
+
del hidden_states
|
137 |
+
|
138 |
+
for i in range(len(sliced)):
|
139 |
+
x = sliced[i]
|
140 |
+
sliced[i] = None
|
141 |
+
|
142 |
+
x = x.to(org_device)
|
143 |
+
x = _self.nonlinearity(x)
|
144 |
+
x = _self.dropout(x)
|
145 |
+
x = _self.conv2(x)
|
146 |
+
x = x.to(cpu_device)
|
147 |
+
sliced[i] = x
|
148 |
+
del x
|
149 |
+
|
150 |
+
hidden_states = cat_h(sliced)
|
151 |
+
del sliced
|
152 |
+
|
153 |
+
# make shortcut
|
154 |
+
if _self.conv_shortcut is not None:
|
155 |
+
sliced = list(torch.chunk(input_tensor, num_slices, dim=2)) # no padding in conv_shortcut パディングがないので普通にスライスする
|
156 |
+
del input_tensor
|
157 |
+
|
158 |
+
for i in range(len(sliced)):
|
159 |
+
x = sliced[i]
|
160 |
+
sliced[i] = None
|
161 |
+
|
162 |
+
x = x.to(org_device)
|
163 |
+
x = _self.conv_shortcut(x)
|
164 |
+
x = x.to(cpu_device)
|
165 |
+
sliced[i] = x
|
166 |
+
del x
|
167 |
+
|
168 |
+
input_tensor = torch.cat(sliced, dim=2)
|
169 |
+
del sliced
|
170 |
+
|
171 |
+
output_tensor = (input_tensor + hidden_states) / _self.output_scale_factor
|
172 |
+
|
173 |
+
output_tensor = output_tensor.to(org_device) # 次のレイヤーがGPUで計算する
|
174 |
+
return output_tensor
|
175 |
+
|
176 |
+
|
177 |
+
class SlicingEncoder(nn.Module):
|
178 |
+
def __init__(
|
179 |
+
self,
|
180 |
+
in_channels=3,
|
181 |
+
out_channels=3,
|
182 |
+
down_block_types=("DownEncoderBlock2D",),
|
183 |
+
block_out_channels=(64,),
|
184 |
+
layers_per_block=2,
|
185 |
+
norm_num_groups=32,
|
186 |
+
act_fn="silu",
|
187 |
+
double_z=True,
|
188 |
+
num_slices=2,
|
189 |
+
):
|
190 |
+
super().__init__()
|
191 |
+
self.layers_per_block = layers_per_block
|
192 |
+
|
193 |
+
self.conv_in = torch.nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1)
|
194 |
+
|
195 |
+
self.mid_block = None
|
196 |
+
self.down_blocks = nn.ModuleList([])
|
197 |
+
|
198 |
+
# down
|
199 |
+
output_channel = block_out_channels[0]
|
200 |
+
for i, down_block_type in enumerate(down_block_types):
|
201 |
+
input_channel = output_channel
|
202 |
+
output_channel = block_out_channels[i]
|
203 |
+
is_final_block = i == len(block_out_channels) - 1
|
204 |
+
|
205 |
+
down_block = get_down_block(
|
206 |
+
down_block_type,
|
207 |
+
num_layers=self.layers_per_block,
|
208 |
+
in_channels=input_channel,
|
209 |
+
out_channels=output_channel,
|
210 |
+
add_downsample=not is_final_block,
|
211 |
+
resnet_eps=1e-6,
|
212 |
+
downsample_padding=0,
|
213 |
+
resnet_act_fn=act_fn,
|
214 |
+
resnet_groups=norm_num_groups,
|
215 |
+
attention_head_dim=output_channel,
|
216 |
+
temb_channels=None,
|
217 |
+
)
|
218 |
+
self.down_blocks.append(down_block)
|
219 |
+
|
220 |
+
# mid
|
221 |
+
self.mid_block = UNetMidBlock2D(
|
222 |
+
in_channels=block_out_channels[-1],
|
223 |
+
resnet_eps=1e-6,
|
224 |
+
resnet_act_fn=act_fn,
|
225 |
+
output_scale_factor=1,
|
226 |
+
resnet_time_scale_shift="default",
|
227 |
+
attention_head_dim=block_out_channels[-1],
|
228 |
+
resnet_groups=norm_num_groups,
|
229 |
+
temb_channels=None,
|
230 |
+
)
|
231 |
+
self.mid_block.attentions[0].set_use_memory_efficient_attention_xformers(True) # とりあえずDiffusersのxformersを使う
|
232 |
+
|
233 |
+
# out
|
234 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
|
235 |
+
self.conv_act = nn.SiLU()
|
236 |
+
|
237 |
+
conv_out_channels = 2 * out_channels if double_z else out_channels
|
238 |
+
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
|
239 |
+
|
240 |
+
# replace forward of ResBlocks
|
241 |
+
def wrapper(func, module, num_slices):
|
242 |
+
def forward(*args, **kwargs):
|
243 |
+
return func(module, num_slices, *args, **kwargs)
|
244 |
+
|
245 |
+
return forward
|
246 |
+
|
247 |
+
self.num_slices = num_slices
|
248 |
+
div = num_slices / (2 ** (len(self.down_blocks) - 1)) # 深い層はそこまで分割しなくていいので適宜減らす
|
249 |
+
# logger.info(f"initial divisor: {div}")
|
250 |
+
if div >= 2:
|
251 |
+
div = int(div)
|
252 |
+
for resnet in self.mid_block.resnets:
|
253 |
+
resnet.forward = wrapper(resblock_forward, resnet, div)
|
254 |
+
# midblock doesn't have downsample
|
255 |
+
|
256 |
+
for i, down_block in enumerate(self.down_blocks[::-1]):
|
257 |
+
if div >= 2:
|
258 |
+
div = int(div)
|
259 |
+
# logger.info(f"down block: {i} divisor: {div}")
|
260 |
+
for resnet in down_block.resnets:
|
261 |
+
resnet.forward = wrapper(resblock_forward, resnet, div)
|
262 |
+
if down_block.downsamplers is not None:
|
263 |
+
# logger.info("has downsample")
|
264 |
+
for downsample in down_block.downsamplers:
|
265 |
+
downsample.forward = wrapper(self.downsample_forward, downsample, div * 2)
|
266 |
+
div *= 2
|
267 |
+
|
268 |
+
def forward(self, x):
|
269 |
+
sample = x
|
270 |
+
del x
|
271 |
+
|
272 |
+
org_device = sample.device
|
273 |
+
cpu_device = torch.device("cpu")
|
274 |
+
|
275 |
+
# sample = self.conv_in(sample)
|
276 |
+
sample = sample.to(cpu_device)
|
277 |
+
sliced = slice_h(sample, self.num_slices)
|
278 |
+
del sample
|
279 |
+
|
280 |
+
for i in range(len(sliced)):
|
281 |
+
x = sliced[i]
|
282 |
+
sliced[i] = None
|
283 |
+
|
284 |
+
x = x.to(org_device)
|
285 |
+
x = self.conv_in(x)
|
286 |
+
x = x.to(cpu_device)
|
287 |
+
sliced[i] = x
|
288 |
+
del x
|
289 |
+
|
290 |
+
sample = cat_h(sliced)
|
291 |
+
del sliced
|
292 |
+
|
293 |
+
sample = sample.to(org_device)
|
294 |
+
|
295 |
+
# down
|
296 |
+
for down_block in self.down_blocks:
|
297 |
+
sample = down_block(sample)
|
298 |
+
|
299 |
+
# middle
|
300 |
+
sample = self.mid_block(sample)
|
301 |
+
|
302 |
+
# post-process
|
303 |
+
# ここも省メモリ化したいが、恐らくそこまでメモリを食わないので省略
|
304 |
+
sample = self.conv_norm_out(sample)
|
305 |
+
sample = self.conv_act(sample)
|
306 |
+
sample = self.conv_out(sample)
|
307 |
+
|
308 |
+
return sample
|
309 |
+
|
310 |
+
def downsample_forward(self, _self, num_slices, hidden_states):
|
311 |
+
assert hidden_states.shape[1] == _self.channels
|
312 |
+
assert _self.use_conv and _self.padding == 0
|
313 |
+
logger.info(f"downsample forward {num_slices} {hidden_states.shape}")
|
314 |
+
|
315 |
+
org_device = hidden_states.device
|
316 |
+
cpu_device = torch.device("cpu")
|
317 |
+
|
318 |
+
hidden_states = hidden_states.to(cpu_device)
|
319 |
+
pad = (0, 1, 0, 1)
|
320 |
+
hidden_states = torch.nn.functional.pad(hidden_states, pad, mode="constant", value=0)
|
321 |
+
|
322 |
+
# slice with even number because of stride 2
|
323 |
+
# strideが2なので偶数でスライスする
|
324 |
+
# slice with pad 1 both sides: to eliminate side effect of padding of conv2d
|
325 |
+
size = (hidden_states.shape[2] + num_slices - 1) // num_slices
|
326 |
+
size = size + 1 if size % 2 == 1 else size
|
327 |
+
|
328 |
+
sliced = []
|
329 |
+
for i in range(num_slices):
|
330 |
+
if i == 0:
|
331 |
+
sliced.append(hidden_states[:, :, : size + 1, :])
|
332 |
+
else:
|
333 |
+
end = size * (i + 1) + 1
|
334 |
+
if hidden_states.shape[2] - end < 4: # if the last slice is too small, use the rest of the tensor
|
335 |
+
end = hidden_states.shape[2]
|
336 |
+
sliced.append(hidden_states[:, :, size * i - 1 : end, :])
|
337 |
+
if end >= hidden_states.shape[2]:
|
338 |
+
break
|
339 |
+
del hidden_states
|
340 |
+
|
341 |
+
for i in range(len(sliced)):
|
342 |
+
x = sliced[i]
|
343 |
+
sliced[i] = None
|
344 |
+
|
345 |
+
x = x.to(org_device)
|
346 |
+
x = _self.conv(x)
|
347 |
+
x = x.to(cpu_device)
|
348 |
+
|
349 |
+
# ここだけ雰囲気が違うのはCopilotのせい
|
350 |
+
if i == 0:
|
351 |
+
hidden_states = x
|
352 |
+
else:
|
353 |
+
hidden_states = torch.cat([hidden_states, x], dim=2)
|
354 |
+
|
355 |
+
hidden_states = hidden_states.to(org_device)
|
356 |
+
# logger.info(f"downsample forward done {hidden_states.shape}")
|
357 |
+
return hidden_states
|
358 |
+
|
359 |
+
|
360 |
+
class SlicingDecoder(nn.Module):
|
361 |
+
def __init__(
|
362 |
+
self,
|
363 |
+
in_channels=3,
|
364 |
+
out_channels=3,
|
365 |
+
up_block_types=("UpDecoderBlock2D",),
|
366 |
+
block_out_channels=(64,),
|
367 |
+
layers_per_block=2,
|
368 |
+
norm_num_groups=32,
|
369 |
+
act_fn="silu",
|
370 |
+
num_slices=2,
|
371 |
+
):
|
372 |
+
super().__init__()
|
373 |
+
self.layers_per_block = layers_per_block
|
374 |
+
|
375 |
+
self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1)
|
376 |
+
|
377 |
+
self.mid_block = None
|
378 |
+
self.up_blocks = nn.ModuleList([])
|
379 |
+
|
380 |
+
# mid
|
381 |
+
self.mid_block = UNetMidBlock2D(
|
382 |
+
in_channels=block_out_channels[-1],
|
383 |
+
resnet_eps=1e-6,
|
384 |
+
resnet_act_fn=act_fn,
|
385 |
+
output_scale_factor=1,
|
386 |
+
resnet_time_scale_shift="default",
|
387 |
+
attention_head_dim=block_out_channels[-1],
|
388 |
+
resnet_groups=norm_num_groups,
|
389 |
+
temb_channels=None,
|
390 |
+
)
|
391 |
+
self.mid_block.attentions[0].set_use_memory_efficient_attention_xformers(True) # とりあえずDiffusersのxformersを使う
|
392 |
+
|
393 |
+
# up
|
394 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
395 |
+
output_channel = reversed_block_out_channels[0]
|
396 |
+
for i, up_block_type in enumerate(up_block_types):
|
397 |
+
prev_output_channel = output_channel
|
398 |
+
output_channel = reversed_block_out_channels[i]
|
399 |
+
|
400 |
+
is_final_block = i == len(block_out_channels) - 1
|
401 |
+
|
402 |
+
up_block = get_up_block(
|
403 |
+
up_block_type,
|
404 |
+
num_layers=self.layers_per_block + 1,
|
405 |
+
in_channels=prev_output_channel,
|
406 |
+
out_channels=output_channel,
|
407 |
+
prev_output_channel=None,
|
408 |
+
add_upsample=not is_final_block,
|
409 |
+
resnet_eps=1e-6,
|
410 |
+
resnet_act_fn=act_fn,
|
411 |
+
resnet_groups=norm_num_groups,
|
412 |
+
attention_head_dim=output_channel,
|
413 |
+
temb_channels=None,
|
414 |
+
)
|
415 |
+
self.up_blocks.append(up_block)
|
416 |
+
prev_output_channel = output_channel
|
417 |
+
|
418 |
+
# out
|
419 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
|
420 |
+
self.conv_act = nn.SiLU()
|
421 |
+
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
|
422 |
+
|
423 |
+
# replace forward of ResBlocks
|
424 |
+
def wrapper(func, module, num_slices):
|
425 |
+
def forward(*args, **kwargs):
|
426 |
+
return func(module, num_slices, *args, **kwargs)
|
427 |
+
|
428 |
+
return forward
|
429 |
+
|
430 |
+
self.num_slices = num_slices
|
431 |
+
div = num_slices / (2 ** (len(self.up_blocks) - 1))
|
432 |
+
logger.info(f"initial divisor: {div}")
|
433 |
+
if div >= 2:
|
434 |
+
div = int(div)
|
435 |
+
for resnet in self.mid_block.resnets:
|
436 |
+
resnet.forward = wrapper(resblock_forward, resnet, div)
|
437 |
+
# midblock doesn't have upsample
|
438 |
+
|
439 |
+
for i, up_block in enumerate(self.up_blocks):
|
440 |
+
if div >= 2:
|
441 |
+
div = int(div)
|
442 |
+
# logger.info(f"up block: {i} divisor: {div}")
|
443 |
+
for resnet in up_block.resnets:
|
444 |
+
resnet.forward = wrapper(resblock_forward, resnet, div)
|
445 |
+
if up_block.upsamplers is not None:
|
446 |
+
# logger.info("has upsample")
|
447 |
+
for upsample in up_block.upsamplers:
|
448 |
+
upsample.forward = wrapper(self.upsample_forward, upsample, div * 2)
|
449 |
+
div *= 2
|
450 |
+
|
451 |
+
def forward(self, z):
|
452 |
+
sample = z
|
453 |
+
del z
|
454 |
+
sample = self.conv_in(sample)
|
455 |
+
|
456 |
+
# middle
|
457 |
+
sample = self.mid_block(sample)
|
458 |
+
|
459 |
+
# up
|
460 |
+
for i, up_block in enumerate(self.up_blocks):
|
461 |
+
sample = up_block(sample)
|
462 |
+
|
463 |
+
# post-process
|
464 |
+
sample = self.conv_norm_out(sample)
|
465 |
+
sample = self.conv_act(sample)
|
466 |
+
|
467 |
+
# conv_out with slicing because of VRAM usage
|
468 |
+
# conv_outはとてもVRAM使うのでスライスして対応
|
469 |
+
org_device = sample.device
|
470 |
+
cpu_device = torch.device("cpu")
|
471 |
+
sample = sample.to(cpu_device)
|
472 |
+
|
473 |
+
sliced = slice_h(sample, self.num_slices)
|
474 |
+
del sample
|
475 |
+
for i in range(len(sliced)):
|
476 |
+
x = sliced[i]
|
477 |
+
sliced[i] = None
|
478 |
+
|
479 |
+
x = x.to(org_device)
|
480 |
+
x = self.conv_out(x)
|
481 |
+
x = x.to(cpu_device)
|
482 |
+
sliced[i] = x
|
483 |
+
sample = cat_h(sliced)
|
484 |
+
del sliced
|
485 |
+
|
486 |
+
sample = sample.to(org_device)
|
487 |
+
return sample
|
488 |
+
|
489 |
+
def upsample_forward(self, _self, num_slices, hidden_states, output_size=None):
|
490 |
+
assert hidden_states.shape[1] == _self.channels
|
491 |
+
assert _self.use_conv_transpose == False and _self.use_conv
|
492 |
+
|
493 |
+
org_dtype = hidden_states.dtype
|
494 |
+
org_device = hidden_states.device
|
495 |
+
cpu_device = torch.device("cpu")
|
496 |
+
|
497 |
+
hidden_states = hidden_states.to(cpu_device)
|
498 |
+
sliced = slice_h(hidden_states, num_slices)
|
499 |
+
del hidden_states
|
500 |
+
|
501 |
+
for i in range(len(sliced)):
|
502 |
+
x = sliced[i]
|
503 |
+
sliced[i] = None
|
504 |
+
|
505 |
+
x = x.to(org_device)
|
506 |
+
|
507 |
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
508 |
+
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
|
509 |
+
# https://github.com/pytorch/pytorch/issues/86679
|
510 |
+
# PyTorch 2で直らないかね……
|
511 |
+
if org_dtype == torch.bfloat16:
|
512 |
+
x = x.to(torch.float32)
|
513 |
+
|
514 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
515 |
+
|
516 |
+
if org_dtype == torch.bfloat16:
|
517 |
+
x = x.to(org_dtype)
|
518 |
+
|
519 |
+
x = _self.conv(x)
|
520 |
+
|
521 |
+
# upsampleされてるのでpadは2になる
|
522 |
+
if i == 0:
|
523 |
+
x = x[:, :, :-2, :]
|
524 |
+
elif i == num_slices - 1:
|
525 |
+
x = x[:, :, 2:, :]
|
526 |
+
else:
|
527 |
+
x = x[:, :, 2:-2, :]
|
528 |
+
|
529 |
+
x = x.to(cpu_device)
|
530 |
+
sliced[i] = x
|
531 |
+
del x
|
532 |
+
|
533 |
+
hidden_states = torch.cat(sliced, dim=2)
|
534 |
+
# logger.info(f"us hidden_states {hidden_states.shape}")
|
535 |
+
del sliced
|
536 |
+
|
537 |
+
hidden_states = hidden_states.to(org_device)
|
538 |
+
return hidden_states
|
539 |
+
|
540 |
+
|
541 |
+
class SlicingAutoencoderKL(ModelMixin, ConfigMixin):
|
542 |
+
r"""Variational Autoencoder (VAE) model with KL loss from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma
|
543 |
+
and Max Welling.
|
544 |
+
|
545 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
|
546 |
+
implements for all the model (such as downloading or saving, etc.)
|
547 |
+
|
548 |
+
Parameters:
|
549 |
+
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
|
550 |
+
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
|
551 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to :
|
552 |
+
obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types.
|
553 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to :
|
554 |
+
obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types.
|
555 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to :
|
556 |
+
obj:`(64,)`): Tuple of block output channels.
|
557 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
558 |
+
latent_channels (`int`, *optional*, defaults to `4`): Number of channels in the latent space.
|
559 |
+
sample_size (`int`, *optional*, defaults to `32`): TODO
|
560 |
+
"""
|
561 |
+
|
562 |
+
@register_to_config
|
563 |
+
def __init__(
|
564 |
+
self,
|
565 |
+
in_channels: int = 3,
|
566 |
+
out_channels: int = 3,
|
567 |
+
down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
|
568 |
+
up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
|
569 |
+
block_out_channels: Tuple[int] = (64,),
|
570 |
+
layers_per_block: int = 1,
|
571 |
+
act_fn: str = "silu",
|
572 |
+
latent_channels: int = 4,
|
573 |
+
norm_num_groups: int = 32,
|
574 |
+
sample_size: int = 32,
|
575 |
+
num_slices: int = 16,
|
576 |
+
):
|
577 |
+
super().__init__()
|
578 |
+
|
579 |
+
# pass init params to Encoder
|
580 |
+
self.encoder = SlicingEncoder(
|
581 |
+
in_channels=in_channels,
|
582 |
+
out_channels=latent_channels,
|
583 |
+
down_block_types=down_block_types,
|
584 |
+
block_out_channels=block_out_channels,
|
585 |
+
layers_per_block=layers_per_block,
|
586 |
+
act_fn=act_fn,
|
587 |
+
norm_num_groups=norm_num_groups,
|
588 |
+
double_z=True,
|
589 |
+
num_slices=num_slices,
|
590 |
+
)
|
591 |
+
|
592 |
+
# pass init params to Decoder
|
593 |
+
self.decoder = SlicingDecoder(
|
594 |
+
in_channels=latent_channels,
|
595 |
+
out_channels=out_channels,
|
596 |
+
up_block_types=up_block_types,
|
597 |
+
block_out_channels=block_out_channels,
|
598 |
+
layers_per_block=layers_per_block,
|
599 |
+
norm_num_groups=norm_num_groups,
|
600 |
+
act_fn=act_fn,
|
601 |
+
num_slices=num_slices,
|
602 |
+
)
|
603 |
+
|
604 |
+
self.quant_conv = torch.nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
|
605 |
+
self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1)
|
606 |
+
self.use_slicing = False
|
607 |
+
|
608 |
+
def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
|
609 |
+
h = self.encoder(x)
|
610 |
+
moments = self.quant_conv(h)
|
611 |
+
posterior = DiagonalGaussianDistribution(moments)
|
612 |
+
|
613 |
+
if not return_dict:
|
614 |
+
return (posterior,)
|
615 |
+
|
616 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
617 |
+
|
618 |
+
def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
|
619 |
+
z = self.post_quant_conv(z)
|
620 |
+
dec = self.decoder(z)
|
621 |
+
|
622 |
+
if not return_dict:
|
623 |
+
return (dec,)
|
624 |
+
|
625 |
+
return DecoderOutput(sample=dec)
|
626 |
+
|
627 |
+
# これはバッチ方向のスライシング 紛らわしい
|
628 |
+
def enable_slicing(self):
|
629 |
+
r"""
|
630 |
+
Enable sliced VAE decoding.
|
631 |
+
|
632 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
633 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
634 |
+
"""
|
635 |
+
self.use_slicing = True
|
636 |
+
|
637 |
+
def disable_slicing(self):
|
638 |
+
r"""
|
639 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously invoked, this method will go back to computing
|
640 |
+
decoding in one step.
|
641 |
+
"""
|
642 |
+
self.use_slicing = False
|
643 |
+
|
644 |
+
def decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
|
645 |
+
if self.use_slicing and z.shape[0] > 1:
|
646 |
+
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
647 |
+
decoded = torch.cat(decoded_slices)
|
648 |
+
else:
|
649 |
+
decoded = self._decode(z).sample
|
650 |
+
|
651 |
+
if not return_dict:
|
652 |
+
return (decoded,)
|
653 |
+
|
654 |
+
return DecoderOutput(sample=decoded)
|
655 |
+
|
656 |
+
def forward(
|
657 |
+
self,
|
658 |
+
sample: torch.FloatTensor,
|
659 |
+
sample_posterior: bool = False,
|
660 |
+
return_dict: bool = True,
|
661 |
+
generator: Optional[torch.Generator] = None,
|
662 |
+
) -> Union[DecoderOutput, torch.FloatTensor]:
|
663 |
+
r"""
|
664 |
+
Args:
|
665 |
+
sample (`torch.FloatTensor`): Input sample.
|
666 |
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
667 |
+
Whether to sample from the posterior.
|
668 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
669 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
670 |
+
"""
|
671 |
+
x = sample
|
672 |
+
posterior = self.encode(x).latent_dist
|
673 |
+
if sample_posterior:
|
674 |
+
z = posterior.sample(generator=generator)
|
675 |
+
else:
|
676 |
+
z = posterior.mode()
|
677 |
+
dec = self.decode(z).sample
|
678 |
+
|
679 |
+
if not return_dict:
|
680 |
+
return (dec,)
|
681 |
+
|
682 |
+
return DecoderOutput(sample=dec)
|