ACCC1380 commited on
Commit
2c956e8
1 Parent(s): 50f885c

Upload lora-scripts/sd-scripts/fine_tune.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. lora-scripts/sd-scripts/fine_tune.py +526 -0
lora-scripts/sd-scripts/fine_tune.py ADDED
@@ -0,0 +1,526 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # training with captions
2
+ # XXX dropped option: hypernetwork training
3
+
4
+ import argparse
5
+ import math
6
+ import os
7
+ from multiprocessing import Value
8
+ import toml
9
+
10
+ from tqdm import tqdm
11
+
12
+ import torch
13
+ from library import deepspeed_utils
14
+ from library.device_utils import init_ipex, clean_memory_on_device
15
+
16
+ init_ipex()
17
+
18
+ from accelerate.utils import set_seed
19
+ from diffusers import DDPMScheduler
20
+
21
+ from library.utils import setup_logging, add_logging_arguments
22
+
23
+ setup_logging()
24
+ import logging
25
+
26
+ logger = logging.getLogger(__name__)
27
+
28
+ import library.train_util as train_util
29
+ import library.config_util as config_util
30
+ from library.config_util import (
31
+ ConfigSanitizer,
32
+ BlueprintGenerator,
33
+ )
34
+ import library.custom_train_functions as custom_train_functions
35
+ from library.custom_train_functions import (
36
+ apply_snr_weight,
37
+ get_weighted_text_embeddings,
38
+ prepare_scheduler_for_custom_training,
39
+ scale_v_prediction_loss_like_noise_prediction,
40
+ apply_debiased_estimation,
41
+ )
42
+
43
+
44
+ def train(args):
45
+ train_util.verify_training_args(args)
46
+ train_util.prepare_dataset_args(args, True)
47
+ deepspeed_utils.prepare_deepspeed_args(args)
48
+ setup_logging(args, reset=True)
49
+
50
+ cache_latents = args.cache_latents
51
+
52
+ if args.seed is not None:
53
+ set_seed(args.seed) # 乱数系列を初期化する
54
+
55
+ tokenizer = train_util.load_tokenizer(args)
56
+
57
+ # データセットを準備する
58
+ if args.dataset_class is None:
59
+ blueprint_generator = BlueprintGenerator(ConfigSanitizer(False, True, False, True))
60
+ if args.dataset_config is not None:
61
+ logger.info(f"Load dataset config from {args.dataset_config}")
62
+ user_config = config_util.load_user_config(args.dataset_config)
63
+ ignored = ["train_data_dir", "in_json"]
64
+ if any(getattr(args, attr) is not None for attr in ignored):
65
+ logger.warning(
66
+ "ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
67
+ ", ".join(ignored)
68
+ )
69
+ )
70
+ else:
71
+ user_config = {
72
+ "datasets": [
73
+ {
74
+ "subsets": [
75
+ {
76
+ "image_dir": args.train_data_dir,
77
+ "metadata_file": args.in_json,
78
+ }
79
+ ]
80
+ }
81
+ ]
82
+ }
83
+
84
+ blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
85
+ train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
86
+ else:
87
+ train_dataset_group = train_util.load_arbitrary_dataset(args, tokenizer)
88
+
89
+ current_epoch = Value("i", 0)
90
+ current_step = Value("i", 0)
91
+ ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
92
+ collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)
93
+
94
+ if args.debug_dataset:
95
+ train_util.debug_dataset(train_dataset_group)
96
+ return
97
+ if len(train_dataset_group) == 0:
98
+ logger.error(
99
+ "No data found. Please verify the metadata file and train_data_dir option. / 画像がありません。メタデータおよびtrain_data_dirオプションを確認してください。"
100
+ )
101
+ return
102
+
103
+ if cache_latents:
104
+ assert (
105
+ train_dataset_group.is_latent_cacheable()
106
+ ), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
107
+
108
+ # acceleratorを準備する
109
+ logger.info("prepare accelerator")
110
+ accelerator = train_util.prepare_accelerator(args)
111
+
112
+ # mixed precisionに対応した型を用意しておき適宜castする
113
+ weight_dtype, save_dtype = train_util.prepare_dtype(args)
114
+ vae_dtype = torch.float32 if args.no_half_vae else weight_dtype
115
+
116
+ # モデルを読み込む
117
+ text_encoder, vae, unet, load_stable_diffusion_format = train_util.load_target_model(args, weight_dtype, accelerator)
118
+
119
+ # verify load/save model formats
120
+ if load_stable_diffusion_format:
121
+ src_stable_diffusion_ckpt = args.pretrained_model_name_or_path
122
+ src_diffusers_model_path = None
123
+ else:
124
+ src_stable_diffusion_ckpt = None
125
+ src_diffusers_model_path = args.pretrained_model_name_or_path
126
+
127
+ if args.save_model_as is None:
128
+ save_stable_diffusion_format = load_stable_diffusion_format
129
+ use_safetensors = args.use_safetensors
130
+ else:
131
+ save_stable_diffusion_format = args.save_model_as.lower() == "ckpt" or args.save_model_as.lower() == "safetensors"
132
+ use_safetensors = args.use_safetensors or ("safetensors" in args.save_model_as.lower())
133
+
134
+ # Diffusers版のxformers使用フラグを設定する関数
135
+ def set_diffusers_xformers_flag(model, valid):
136
+ # model.set_use_memory_efficient_attention_xformers(valid) # 次のリリースでなくなりそう
137
+ # pipeが自動で再帰的にset_use_memory_efficient_attention_xformersを探すんだって(;´Д`)
138
+ # U-Netだけ使う時にはどうすればいいのか……仕方ないからコピって使うか
139
+ # 0.10.2でなんか巻き戻って個別に指定するようになった(;^ω^)
140
+
141
+ # Recursively walk through all the children.
142
+ # Any children which exposes the set_use_memory_efficient_attention_xformers method
143
+ # gets the message
144
+ def fn_recursive_set_mem_eff(module: torch.nn.Module):
145
+ if hasattr(module, "set_use_memory_efficient_attention_xformers"):
146
+ module.set_use_memory_efficient_attention_xformers(valid)
147
+
148
+ for child in module.children():
149
+ fn_recursive_set_mem_eff(child)
150
+
151
+ fn_recursive_set_mem_eff(model)
152
+
153
+ # モデルに xformers とか memory efficient attention を組み込む
154
+ if args.diffusers_xformers:
155
+ accelerator.print("Use xformers by Diffusers")
156
+ set_diffusers_xformers_flag(unet, True)
157
+ else:
158
+ # Windows版のxformersはfloatで学習できないのでxformersを使わない設定も可能にしておく必要がある
159
+ accelerator.print("Disable Diffusers' xformers")
160
+ set_diffusers_xformers_flag(unet, False)
161
+ train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa)
162
+
163
+ # 学習を準備する
164
+ if cache_latents:
165
+ vae.to(accelerator.device, dtype=vae_dtype)
166
+ vae.requires_grad_(False)
167
+ vae.eval()
168
+ with torch.no_grad():
169
+ train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process)
170
+ vae.to("cpu")
171
+ clean_memory_on_device(accelerator.device)
172
+
173
+ accelerator.wait_for_everyone()
174
+
175
+ # 学習を準備する:モデルを適切な状態にする
176
+ training_models = []
177
+ if args.gradient_checkpointing:
178
+ unet.enable_gradient_checkpointing()
179
+ training_models.append(unet)
180
+
181
+ if args.train_text_encoder:
182
+ accelerator.print("enable text encoder training")
183
+ if args.gradient_checkpointing:
184
+ text_encoder.gradient_checkpointing_enable()
185
+ training_models.append(text_encoder)
186
+ else:
187
+ text_encoder.to(accelerator.device, dtype=weight_dtype)
188
+ text_encoder.requires_grad_(False) # text encoderは学習しない
189
+ if args.gradient_checkpointing:
190
+ text_encoder.gradient_checkpointing_enable()
191
+ text_encoder.train() # required for gradient_checkpointing
192
+ else:
193
+ text_encoder.eval()
194
+
195
+ if not cache_latents:
196
+ vae.requires_grad_(False)
197
+ vae.eval()
198
+ vae.to(accelerator.device, dtype=vae_dtype)
199
+
200
+ for m in training_models:
201
+ m.requires_grad_(True)
202
+
203
+ trainable_params = []
204
+ if args.learning_rate_te is None or not args.train_text_encoder:
205
+ for m in training_models:
206
+ trainable_params.extend(m.parameters())
207
+ else:
208
+ trainable_params = [
209
+ {"params": list(unet.parameters()), "lr": args.learning_rate},
210
+ {"params": list(text_encoder.parameters()), "lr": args.learning_rate_te},
211
+ ]
212
+
213
+ # 学習に必要なクラスを準備する
214
+ accelerator.print("prepare optimizer, data loader etc.")
215
+ _, _, optimizer = train_util.get_optimizer(args, trainable_params=trainable_params)
216
+
217
+ # dataloaderを準備する
218
+ # DataLoaderのプロセス数:0 は persistent_workers が使えないので注意
219
+ n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers
220
+ train_dataloader = torch.utils.data.DataLoader(
221
+ train_dataset_group,
222
+ batch_size=1,
223
+ shuffle=True,
224
+ collate_fn=collator,
225
+ num_workers=n_workers,
226
+ persistent_workers=args.persistent_data_loader_workers,
227
+ )
228
+
229
+ # 学習ステップ数を計算する
230
+ if args.max_train_epochs is not None:
231
+ args.max_train_steps = args.max_train_epochs * math.ceil(
232
+ len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
233
+ )
234
+ accelerator.print(
235
+ f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}"
236
+ )
237
+
238
+ # データセット側にも学習ステップを送信
239
+ train_dataset_group.set_max_train_steps(args.max_train_steps)
240
+
241
+ # lr schedulerを用意する
242
+ lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
243
+
244
+ # 実験的機能:勾配も含めたfp16学習を行う モデル全体をfp16にする
245
+ if args.full_fp16:
246
+ assert (
247
+ args.mixed_precision == "fp16"
248
+ ), "full_fp16 requires mixed precision='fp16' / full_fp16を使う��合はmixed_precision='fp16'を指定してください。"
249
+ accelerator.print("enable full fp16 training.")
250
+ unet.to(weight_dtype)
251
+ text_encoder.to(weight_dtype)
252
+
253
+ if args.deepspeed:
254
+ if args.train_text_encoder:
255
+ ds_model = deepspeed_utils.prepare_deepspeed_model(args, unet=unet, text_encoder=text_encoder)
256
+ else:
257
+ ds_model = deepspeed_utils.prepare_deepspeed_model(args, unet=unet)
258
+ ds_model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
259
+ ds_model, optimizer, train_dataloader, lr_scheduler
260
+ )
261
+ training_models = [ds_model]
262
+ else:
263
+ # acceleratorがなんかよろしくやってくれるらしい
264
+ if args.train_text_encoder:
265
+ unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
266
+ unet, text_encoder, optimizer, train_dataloader, lr_scheduler
267
+ )
268
+ else:
269
+ unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler)
270
+
271
+ # 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
272
+ if args.full_fp16:
273
+ train_util.patch_accelerator_for_fp16_training(accelerator)
274
+
275
+ # resumeする
276
+ train_util.resume_from_local_or_hf_if_specified(accelerator, args)
277
+
278
+ # epoch数を計算する
279
+ num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
280
+ num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
281
+ if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
282
+ args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
283
+
284
+ # 学習する
285
+ total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
286
+ accelerator.print("running training / 学習開始")
287
+ accelerator.print(f" num examples / サンプル数: {train_dataset_group.num_train_images}")
288
+ accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
289
+ accelerator.print(f" num epochs / epoch数: {num_train_epochs}")
290
+ accelerator.print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
291
+ accelerator.print(
292
+ f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}"
293
+ )
294
+ accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
295
+ accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
296
+
297
+ progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
298
+ global_step = 0
299
+
300
+ noise_scheduler = DDPMScheduler(
301
+ beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
302
+ )
303
+ prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device)
304
+ if args.zero_terminal_snr:
305
+ custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler)
306
+
307
+ if accelerator.is_main_process:
308
+ init_kwargs = {}
309
+ if args.wandb_run_name:
310
+ init_kwargs["wandb"] = {"name": args.wandb_run_name}
311
+ if args.log_tracker_config is not None:
312
+ init_kwargs = toml.load(args.log_tracker_config)
313
+ accelerator.init_trackers("finetuning" if args.log_tracker_name is None else args.log_tracker_name, init_kwargs=init_kwargs)
314
+
315
+ # For --sample_at_first
316
+ train_util.sample_images(accelerator, args, 0, global_step, accelerator.device, vae, tokenizer, text_encoder, unet)
317
+
318
+ loss_recorder = train_util.LossRecorder()
319
+ for epoch in range(num_train_epochs):
320
+ accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}")
321
+ current_epoch.value = epoch + 1
322
+
323
+ for m in training_models:
324
+ m.train()
325
+
326
+ for step, batch in enumerate(train_dataloader):
327
+ current_step.value = global_step
328
+ with accelerator.accumulate(*training_models):
329
+ with torch.no_grad():
330
+ if "latents" in batch and batch["latents"] is not None:
331
+ latents = batch["latents"].to(accelerator.device).to(dtype=weight_dtype)
332
+ else:
333
+ # latentに変換
334
+ latents = vae.encode(batch["images"].to(dtype=vae_dtype)).latent_dist.sample().to(weight_dtype)
335
+ latents = latents * 0.18215
336
+ b_size = latents.shape[0]
337
+
338
+ with torch.set_grad_enabled(args.train_text_encoder):
339
+ # Get the text embedding for conditioning
340
+ if args.weighted_captions:
341
+ encoder_hidden_states = get_weighted_text_embeddings(
342
+ tokenizer,
343
+ text_encoder,
344
+ batch["captions"],
345
+ accelerator.device,
346
+ args.max_token_length // 75 if args.max_token_length else 1,
347
+ clip_skip=args.clip_skip,
348
+ )
349
+ else:
350
+ input_ids = batch["input_ids"].to(accelerator.device)
351
+ encoder_hidden_states = train_util.get_hidden_states(
352
+ args, input_ids, tokenizer, text_encoder, None if not args.full_fp16 else weight_dtype
353
+ )
354
+
355
+ # Sample noise, sample a random timestep for each image, and add noise to the latents,
356
+ # with noise offset and/or multires noise if specified
357
+ noise, noisy_latents, timesteps, huber_c = train_util.get_noise_noisy_latents_and_timesteps(args, noise_scheduler, latents)
358
+
359
+ # Predict the noise residual
360
+ with accelerator.autocast():
361
+ noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
362
+
363
+ if args.v_parameterization:
364
+ # v-parameterization training
365
+ target = noise_scheduler.get_velocity(latents, noise, timesteps)
366
+ else:
367
+ target = noise
368
+
369
+ if args.min_snr_gamma or args.scale_v_pred_loss_like_noise_pred or args.debiased_estimation_loss:
370
+ # do not mean over batch dimension for snr weight or scale v-pred loss
371
+ loss = train_util.conditional_loss(noise_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c)
372
+ loss = loss.mean([1, 2, 3])
373
+
374
+ if args.min_snr_gamma:
375
+ loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma, args.v_parameterization)
376
+ if args.scale_v_pred_loss_like_noise_pred:
377
+ loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler)
378
+ if args.debiased_estimation_loss:
379
+ loss = apply_debiased_estimation(loss, timesteps, noise_scheduler)
380
+
381
+ loss = loss.mean() # mean over batch dimension
382
+ else:
383
+ loss = train_util.conditional_loss(noise_pred.float(), target.float(), reduction="mean", loss_type=args.loss_type, huber_c=huber_c)
384
+
385
+ accelerator.backward(loss)
386
+ if accelerator.sync_gradients and args.max_grad_norm != 0.0:
387
+ params_to_clip = []
388
+ for m in training_models:
389
+ params_to_clip.extend(m.parameters())
390
+ accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
391
+
392
+ optimizer.step()
393
+ lr_scheduler.step()
394
+ optimizer.zero_grad(set_to_none=True)
395
+
396
+ # Checks if the accelerator has performed an optimization step behind the scenes
397
+ if accelerator.sync_gradients:
398
+ progress_bar.update(1)
399
+ global_step += 1
400
+
401
+ train_util.sample_images(
402
+ accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet
403
+ )
404
+
405
+ # 指定ステップごとにモデルを保存
406
+ if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0:
407
+ accelerator.wait_for_everyone()
408
+ if accelerator.is_main_process:
409
+ src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
410
+ train_util.save_sd_model_on_epoch_end_or_stepwise(
411
+ args,
412
+ False,
413
+ accelerator,
414
+ src_path,
415
+ save_stable_diffusion_format,
416
+ use_safetensors,
417
+ save_dtype,
418
+ epoch,
419
+ num_train_epochs,
420
+ global_step,
421
+ accelerator.unwrap_model(text_encoder),
422
+ accelerator.unwrap_model(unet),
423
+ vae,
424
+ )
425
+
426
+ current_loss = loss.detach().item() # 平均なのでbatch sizeは関係ないはず
427
+ if args.logging_dir is not None:
428
+ logs = {"loss": current_loss}
429
+ train_util.append_lr_to_logs(logs, lr_scheduler, args.optimizer_type, including_unet=True)
430
+ accelerator.log(logs, step=global_step)
431
+
432
+ loss_recorder.add(epoch=epoch, step=step, loss=current_loss)
433
+ avr_loss: float = loss_recorder.moving_average
434
+ logs = {"avr_loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
435
+ progress_bar.set_postfix(**logs)
436
+
437
+ if global_step >= args.max_train_steps:
438
+ break
439
+
440
+ if args.logging_dir is not None:
441
+ logs = {"loss/epoch": loss_recorder.moving_average}
442
+ accelerator.log(logs, step=epoch + 1)
443
+
444
+ accelerator.wait_for_everyone()
445
+
446
+ if args.save_every_n_epochs is not None:
447
+ if accelerator.is_main_process:
448
+ src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
449
+ train_util.save_sd_model_on_epoch_end_or_stepwise(
450
+ args,
451
+ True,
452
+ accelerator,
453
+ src_path,
454
+ save_stable_diffusion_format,
455
+ use_safetensors,
456
+ save_dtype,
457
+ epoch,
458
+ num_train_epochs,
459
+ global_step,
460
+ accelerator.unwrap_model(text_encoder),
461
+ accelerator.unwrap_model(unet),
462
+ vae,
463
+ )
464
+
465
+ train_util.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet)
466
+
467
+ is_main_process = accelerator.is_main_process
468
+ if is_main_process:
469
+ unet = accelerator.unwrap_model(unet)
470
+ text_encoder = accelerator.unwrap_model(text_encoder)
471
+
472
+ accelerator.end_training()
473
+
474
+ if is_main_process and (args.save_state or args.save_state_on_train_end):
475
+ train_util.save_state_on_train_end(args, accelerator)
476
+
477
+ del accelerator # この後メモリを使うのでこれは消す
478
+
479
+ if is_main_process:
480
+ src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
481
+ train_util.save_sd_model_on_train_end(
482
+ args, src_path, save_stable_diffusion_format, use_safetensors, save_dtype, epoch, global_step, text_encoder, unet, vae
483
+ )
484
+ logger.info("model saved.")
485
+
486
+
487
+ def setup_parser() -> argparse.ArgumentParser:
488
+ parser = argparse.ArgumentParser()
489
+
490
+ add_logging_arguments(parser)
491
+ train_util.add_sd_models_arguments(parser)
492
+ train_util.add_dataset_arguments(parser, False, True, True)
493
+ train_util.add_training_arguments(parser, False)
494
+ deepspeed_utils.add_deepspeed_arguments(parser)
495
+ train_util.add_sd_saving_arguments(parser)
496
+ train_util.add_optimizer_arguments(parser)
497
+ config_util.add_config_arguments(parser)
498
+ custom_train_functions.add_custom_train_arguments(parser)
499
+
500
+ parser.add_argument(
501
+ "--diffusers_xformers", action="store_true", help="use xformers by diffusers / Diffusersでxformersを使用する"
502
+ )
503
+ parser.add_argument("--train_text_encoder", action="store_true", help="train text encoder / text encoderも学習する")
504
+ parser.add_argument(
505
+ "--learning_rate_te",
506
+ type=float,
507
+ default=None,
508
+ help="learning rate for text encoder, default is same as unet / Text Encoderの学習率、デフォルトはunetと同じ",
509
+ )
510
+ parser.add_argument(
511
+ "--no_half_vae",
512
+ action="store_true",
513
+ help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う",
514
+ )
515
+
516
+ return parser
517
+
518
+
519
+ if __name__ == "__main__":
520
+ parser = setup_parser()
521
+
522
+ args = parser.parse_args()
523
+ train_util.verify_command_line_training_args(args)
524
+ args = train_util.read_config_from_file(args, parser)
525
+
526
+ train(args)