Upload lora-scripts/sd-scripts/networks/resize_lora.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/networks/resize_lora.py
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Convert LoRA to different rank approximation (should only be used to go to lower rank)
|
2 |
+
# This code is based off the extract_lora_from_models.py file which is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py
|
3 |
+
# Thanks to cloneofsimo
|
4 |
+
|
5 |
+
import os
|
6 |
+
import argparse
|
7 |
+
import torch
|
8 |
+
from safetensors.torch import load_file, save_file, safe_open
|
9 |
+
from tqdm import tqdm
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
from library import train_util
|
13 |
+
from library import model_util
|
14 |
+
from library.utils import setup_logging
|
15 |
+
|
16 |
+
setup_logging()
|
17 |
+
import logging
|
18 |
+
|
19 |
+
logger = logging.getLogger(__name__)
|
20 |
+
|
21 |
+
MIN_SV = 1e-6
|
22 |
+
|
23 |
+
# Model save and load functions
|
24 |
+
|
25 |
+
|
26 |
+
def load_state_dict(file_name, dtype):
|
27 |
+
if model_util.is_safetensors(file_name):
|
28 |
+
sd = load_file(file_name)
|
29 |
+
with safe_open(file_name, framework="pt") as f:
|
30 |
+
metadata = f.metadata()
|
31 |
+
else:
|
32 |
+
sd = torch.load(file_name, map_location="cpu")
|
33 |
+
metadata = None
|
34 |
+
|
35 |
+
for key in list(sd.keys()):
|
36 |
+
if type(sd[key]) == torch.Tensor:
|
37 |
+
sd[key] = sd[key].to(dtype)
|
38 |
+
|
39 |
+
return sd, metadata
|
40 |
+
|
41 |
+
|
42 |
+
def save_to_file(file_name, state_dict, dtype, metadata):
|
43 |
+
if dtype is not None:
|
44 |
+
for key in list(state_dict.keys()):
|
45 |
+
if type(state_dict[key]) == torch.Tensor:
|
46 |
+
state_dict[key] = state_dict[key].to(dtype)
|
47 |
+
|
48 |
+
if model_util.is_safetensors(file_name):
|
49 |
+
save_file(state_dict, file_name, metadata)
|
50 |
+
else:
|
51 |
+
torch.save(state_dict, file_name)
|
52 |
+
|
53 |
+
|
54 |
+
# Indexing functions
|
55 |
+
|
56 |
+
|
57 |
+
def index_sv_cumulative(S, target):
|
58 |
+
original_sum = float(torch.sum(S))
|
59 |
+
cumulative_sums = torch.cumsum(S, dim=0) / original_sum
|
60 |
+
index = int(torch.searchsorted(cumulative_sums, target)) + 1
|
61 |
+
index = max(1, min(index, len(S) - 1))
|
62 |
+
|
63 |
+
return index
|
64 |
+
|
65 |
+
|
66 |
+
def index_sv_fro(S, target):
|
67 |
+
S_squared = S.pow(2)
|
68 |
+
S_fro_sq = float(torch.sum(S_squared))
|
69 |
+
sum_S_squared = torch.cumsum(S_squared, dim=0) / S_fro_sq
|
70 |
+
index = int(torch.searchsorted(sum_S_squared, target**2)) + 1
|
71 |
+
index = max(1, min(index, len(S) - 1))
|
72 |
+
|
73 |
+
return index
|
74 |
+
|
75 |
+
|
76 |
+
def index_sv_ratio(S, target):
|
77 |
+
max_sv = S[0]
|
78 |
+
min_sv = max_sv / target
|
79 |
+
index = int(torch.sum(S > min_sv).item())
|
80 |
+
index = max(1, min(index, len(S) - 1))
|
81 |
+
|
82 |
+
return index
|
83 |
+
|
84 |
+
|
85 |
+
# Modified from Kohaku-blueleaf's extract/merge functions
|
86 |
+
def extract_conv(weight, lora_rank, dynamic_method, dynamic_param, device, scale=1):
|
87 |
+
out_size, in_size, kernel_size, _ = weight.size()
|
88 |
+
U, S, Vh = torch.linalg.svd(weight.reshape(out_size, -1).to(device))
|
89 |
+
|
90 |
+
param_dict = rank_resize(S, lora_rank, dynamic_method, dynamic_param, scale)
|
91 |
+
lora_rank = param_dict["new_rank"]
|
92 |
+
|
93 |
+
U = U[:, :lora_rank]
|
94 |
+
S = S[:lora_rank]
|
95 |
+
U = U @ torch.diag(S)
|
96 |
+
Vh = Vh[:lora_rank, :]
|
97 |
+
|
98 |
+
param_dict["lora_down"] = Vh.reshape(lora_rank, in_size, kernel_size, kernel_size).cpu()
|
99 |
+
param_dict["lora_up"] = U.reshape(out_size, lora_rank, 1, 1).cpu()
|
100 |
+
del U, S, Vh, weight
|
101 |
+
return param_dict
|
102 |
+
|
103 |
+
|
104 |
+
def extract_linear(weight, lora_rank, dynamic_method, dynamic_param, device, scale=1):
|
105 |
+
out_size, in_size = weight.size()
|
106 |
+
|
107 |
+
U, S, Vh = torch.linalg.svd(weight.to(device))
|
108 |
+
|
109 |
+
param_dict = rank_resize(S, lora_rank, dynamic_method, dynamic_param, scale)
|
110 |
+
lora_rank = param_dict["new_rank"]
|
111 |
+
|
112 |
+
U = U[:, :lora_rank]
|
113 |
+
S = S[:lora_rank]
|
114 |
+
U = U @ torch.diag(S)
|
115 |
+
Vh = Vh[:lora_rank, :]
|
116 |
+
|
117 |
+
param_dict["lora_down"] = Vh.reshape(lora_rank, in_size).cpu()
|
118 |
+
param_dict["lora_up"] = U.reshape(out_size, lora_rank).cpu()
|
119 |
+
del U, S, Vh, weight
|
120 |
+
return param_dict
|
121 |
+
|
122 |
+
|
123 |
+
def merge_conv(lora_down, lora_up, device):
|
124 |
+
in_rank, in_size, kernel_size, k_ = lora_down.shape
|
125 |
+
out_size, out_rank, _, _ = lora_up.shape
|
126 |
+
assert in_rank == out_rank and kernel_size == k_, f"rank {in_rank} {out_rank} or kernel {kernel_size} {k_} mismatch"
|
127 |
+
|
128 |
+
lora_down = lora_down.to(device)
|
129 |
+
lora_up = lora_up.to(device)
|
130 |
+
|
131 |
+
merged = lora_up.reshape(out_size, -1) @ lora_down.reshape(in_rank, -1)
|
132 |
+
weight = merged.reshape(out_size, in_size, kernel_size, kernel_size)
|
133 |
+
del lora_up, lora_down
|
134 |
+
return weight
|
135 |
+
|
136 |
+
|
137 |
+
def merge_linear(lora_down, lora_up, device):
|
138 |
+
in_rank, in_size = lora_down.shape
|
139 |
+
out_size, out_rank = lora_up.shape
|
140 |
+
assert in_rank == out_rank, f"rank {in_rank} {out_rank} mismatch"
|
141 |
+
|
142 |
+
lora_down = lora_down.to(device)
|
143 |
+
lora_up = lora_up.to(device)
|
144 |
+
|
145 |
+
weight = lora_up @ lora_down
|
146 |
+
del lora_up, lora_down
|
147 |
+
return weight
|
148 |
+
|
149 |
+
|
150 |
+
# Calculate new rank
|
151 |
+
|
152 |
+
|
153 |
+
def rank_resize(S, rank, dynamic_method, dynamic_param, scale=1):
|
154 |
+
param_dict = {}
|
155 |
+
|
156 |
+
if dynamic_method == "sv_ratio":
|
157 |
+
# Calculate new dim and alpha based off ratio
|
158 |
+
new_rank = index_sv_ratio(S, dynamic_param) + 1
|
159 |
+
new_alpha = float(scale * new_rank)
|
160 |
+
|
161 |
+
elif dynamic_method == "sv_cumulative":
|
162 |
+
# Calculate new dim and alpha based off cumulative sum
|
163 |
+
new_rank = index_sv_cumulative(S, dynamic_param) + 1
|
164 |
+
new_alpha = float(scale * new_rank)
|
165 |
+
|
166 |
+
elif dynamic_method == "sv_fro":
|
167 |
+
# Calculate new dim and alpha based off sqrt sum of squares
|
168 |
+
new_rank = index_sv_fro(S, dynamic_param) + 1
|
169 |
+
new_alpha = float(scale * new_rank)
|
170 |
+
else:
|
171 |
+
new_rank = rank
|
172 |
+
new_alpha = float(scale * new_rank)
|
173 |
+
|
174 |
+
if S[0] <= MIN_SV: # Zero matrix, set dim to 1
|
175 |
+
new_rank = 1
|
176 |
+
new_alpha = float(scale * new_rank)
|
177 |
+
elif new_rank > rank: # cap max rank at rank
|
178 |
+
new_rank = rank
|
179 |
+
new_alpha = float(scale * new_rank)
|
180 |
+
|
181 |
+
# Calculate resize info
|
182 |
+
s_sum = torch.sum(torch.abs(S))
|
183 |
+
s_rank = torch.sum(torch.abs(S[:new_rank]))
|
184 |
+
|
185 |
+
S_squared = S.pow(2)
|
186 |
+
s_fro = torch.sqrt(torch.sum(S_squared))
|
187 |
+
s_red_fro = torch.sqrt(torch.sum(S_squared[:new_rank]))
|
188 |
+
fro_percent = float(s_red_fro / s_fro)
|
189 |
+
|
190 |
+
param_dict["new_rank"] = new_rank
|
191 |
+
param_dict["new_alpha"] = new_alpha
|
192 |
+
param_dict["sum_retained"] = (s_rank) / s_sum
|
193 |
+
param_dict["fro_retained"] = fro_percent
|
194 |
+
param_dict["max_ratio"] = S[0] / S[new_rank - 1]
|
195 |
+
|
196 |
+
return param_dict
|
197 |
+
|
198 |
+
|
199 |
+
def resize_lora_model(lora_sd, new_rank, new_conv_rank, save_dtype, device, dynamic_method, dynamic_param, verbose):
|
200 |
+
network_alpha = None
|
201 |
+
network_dim = None
|
202 |
+
verbose_str = "\n"
|
203 |
+
fro_list = []
|
204 |
+
|
205 |
+
# Extract loaded lora dim and alpha
|
206 |
+
for key, value in lora_sd.items():
|
207 |
+
if network_alpha is None and "alpha" in key:
|
208 |
+
network_alpha = value
|
209 |
+
if network_dim is None and "lora_down" in key and len(value.size()) == 2:
|
210 |
+
network_dim = value.size()[0]
|
211 |
+
if network_alpha is not None and network_dim is not None:
|
212 |
+
break
|
213 |
+
if network_alpha is None:
|
214 |
+
network_alpha = network_dim
|
215 |
+
|
216 |
+
scale = network_alpha / network_dim
|
217 |
+
|
218 |
+
if dynamic_method:
|
219 |
+
logger.info(
|
220 |
+
f"Dynamically determining new alphas and dims based off {dynamic_method}: {dynamic_param}, max rank is {new_rank}"
|
221 |
+
)
|
222 |
+
|
223 |
+
lora_down_weight = None
|
224 |
+
lora_up_weight = None
|
225 |
+
|
226 |
+
o_lora_sd = lora_sd.copy()
|
227 |
+
block_down_name = None
|
228 |
+
block_up_name = None
|
229 |
+
|
230 |
+
with torch.no_grad():
|
231 |
+
for key, value in tqdm(lora_sd.items()):
|
232 |
+
weight_name = None
|
233 |
+
if "lora_down" in key:
|
234 |
+
block_down_name = key.rsplit(".lora_down", 1)[0]
|
235 |
+
weight_name = key.rsplit(".", 1)[-1]
|
236 |
+
lora_down_weight = value
|
237 |
+
else:
|
238 |
+
continue
|
239 |
+
|
240 |
+
# find corresponding lora_up and alpha
|
241 |
+
block_up_name = block_down_name
|
242 |
+
lora_up_weight = lora_sd.get(block_up_name + ".lora_up." + weight_name, None)
|
243 |
+
lora_alpha = lora_sd.get(block_down_name + ".alpha", None)
|
244 |
+
|
245 |
+
weights_loaded = lora_down_weight is not None and lora_up_weight is not None
|
246 |
+
|
247 |
+
if weights_loaded:
|
248 |
+
|
249 |
+
conv2d = len(lora_down_weight.size()) == 4
|
250 |
+
if lora_alpha is None:
|
251 |
+
scale = 1.0
|
252 |
+
else:
|
253 |
+
scale = lora_alpha / lora_down_weight.size()[0]
|
254 |
+
|
255 |
+
if conv2d:
|
256 |
+
full_weight_matrix = merge_conv(lora_down_weight, lora_up_weight, device)
|
257 |
+
param_dict = extract_conv(full_weight_matrix, new_conv_rank, dynamic_method, dynamic_param, device, scale)
|
258 |
+
else:
|
259 |
+
full_weight_matrix = merge_linear(lora_down_weight, lora_up_weight, device)
|
260 |
+
param_dict = extract_linear(full_weight_matrix, new_rank, dynamic_method, dynamic_param, device, scale)
|
261 |
+
|
262 |
+
if verbose:
|
263 |
+
max_ratio = param_dict["max_ratio"]
|
264 |
+
sum_retained = param_dict["sum_retained"]
|
265 |
+
fro_retained = param_dict["fro_retained"]
|
266 |
+
if not np.isnan(fro_retained):
|
267 |
+
fro_list.append(float(fro_retained))
|
268 |
+
|
269 |
+
verbose_str += f"{block_down_name:75} | "
|
270 |
+
verbose_str += (
|
271 |
+
f"sum(S) retained: {sum_retained:.1%}, fro retained: {fro_retained:.1%}, max(S) ratio: {max_ratio:0.1f}"
|
272 |
+
)
|
273 |
+
|
274 |
+
if verbose and dynamic_method:
|
275 |
+
verbose_str += f", dynamic | dim: {param_dict['new_rank']}, alpha: {param_dict['new_alpha']}\n"
|
276 |
+
else:
|
277 |
+
verbose_str += "\n"
|
278 |
+
|
279 |
+
new_alpha = param_dict["new_alpha"]
|
280 |
+
o_lora_sd[block_down_name + "." + "lora_down.weight"] = param_dict["lora_down"].to(save_dtype).contiguous()
|
281 |
+
o_lora_sd[block_up_name + "." + "lora_up.weight"] = param_dict["lora_up"].to(save_dtype).contiguous()
|
282 |
+
o_lora_sd[block_up_name + "." "alpha"] = torch.tensor(param_dict["new_alpha"]).to(save_dtype)
|
283 |
+
|
284 |
+
block_down_name = None
|
285 |
+
block_up_name = None
|
286 |
+
lora_down_weight = None
|
287 |
+
lora_up_weight = None
|
288 |
+
weights_loaded = False
|
289 |
+
del param_dict
|
290 |
+
|
291 |
+
if verbose:
|
292 |
+
print(verbose_str)
|
293 |
+
print(f"Average Frobenius norm retention: {np.mean(fro_list):.2%} | std: {np.std(fro_list):0.3f}")
|
294 |
+
logger.info("resizing complete")
|
295 |
+
return o_lora_sd, network_dim, new_alpha
|
296 |
+
|
297 |
+
|
298 |
+
def resize(args):
|
299 |
+
if args.save_to is None or not (
|
300 |
+
args.save_to.endswith(".ckpt")
|
301 |
+
or args.save_to.endswith(".pt")
|
302 |
+
or args.save_to.endswith(".pth")
|
303 |
+
or args.save_to.endswith(".safetensors")
|
304 |
+
):
|
305 |
+
raise Exception("The --save_to argument must be specified and must be a .ckpt , .pt, .pth or .safetensors file.")
|
306 |
+
|
307 |
+
args.new_conv_rank = args.new_conv_rank if args.new_conv_rank is not None else args.new_rank
|
308 |
+
|
309 |
+
def str_to_dtype(p):
|
310 |
+
if p == "float":
|
311 |
+
return torch.float
|
312 |
+
if p == "fp16":
|
313 |
+
return torch.float16
|
314 |
+
if p == "bf16":
|
315 |
+
return torch.bfloat16
|
316 |
+
return None
|
317 |
+
|
318 |
+
if args.dynamic_method and not args.dynamic_param:
|
319 |
+
raise Exception("If using dynamic_method, then dynamic_param is required")
|
320 |
+
|
321 |
+
merge_dtype = str_to_dtype("float") # matmul method above only seems to work in float32
|
322 |
+
save_dtype = str_to_dtype(args.save_precision)
|
323 |
+
if save_dtype is None:
|
324 |
+
save_dtype = merge_dtype
|
325 |
+
|
326 |
+
logger.info("loading Model...")
|
327 |
+
lora_sd, metadata = load_state_dict(args.model, merge_dtype)
|
328 |
+
|
329 |
+
logger.info("Resizing Lora...")
|
330 |
+
state_dict, old_dim, new_alpha = resize_lora_model(
|
331 |
+
lora_sd, args.new_rank, args.new_conv_rank, save_dtype, args.device, args.dynamic_method, args.dynamic_param, args.verbose
|
332 |
+
)
|
333 |
+
|
334 |
+
# update metadata
|
335 |
+
if metadata is None:
|
336 |
+
metadata = {}
|
337 |
+
|
338 |
+
comment = metadata.get("ss_training_comment", "")
|
339 |
+
|
340 |
+
if not args.dynamic_method:
|
341 |
+
conv_desc = "" if args.new_rank == args.new_conv_rank else f" (conv: {args.new_conv_rank})"
|
342 |
+
metadata["ss_training_comment"] = f"dimension is resized from {old_dim} to {args.new_rank}{conv_desc}; {comment}"
|
343 |
+
metadata["ss_network_dim"] = str(args.new_rank)
|
344 |
+
metadata["ss_network_alpha"] = str(new_alpha)
|
345 |
+
else:
|
346 |
+
metadata["ss_training_comment"] = (
|
347 |
+
f"Dynamic resize with {args.dynamic_method}: {args.dynamic_param} from {old_dim}; {comment}"
|
348 |
+
)
|
349 |
+
metadata["ss_network_dim"] = "Dynamic"
|
350 |
+
metadata["ss_network_alpha"] = "Dynamic"
|
351 |
+
|
352 |
+
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
|
353 |
+
metadata["sshs_model_hash"] = model_hash
|
354 |
+
metadata["sshs_legacy_hash"] = legacy_hash
|
355 |
+
|
356 |
+
logger.info(f"saving model to: {args.save_to}")
|
357 |
+
save_to_file(args.save_to, state_dict, save_dtype, metadata)
|
358 |
+
|
359 |
+
|
360 |
+
def setup_parser() -> argparse.ArgumentParser:
|
361 |
+
parser = argparse.ArgumentParser()
|
362 |
+
|
363 |
+
parser.add_argument(
|
364 |
+
"--save_precision",
|
365 |
+
type=str,
|
366 |
+
default=None,
|
367 |
+
choices=[None, "float", "fp16", "bf16"],
|
368 |
+
help="precision in saving, float if omitted / 保存時の精度、未指定時はfloat",
|
369 |
+
)
|
370 |
+
parser.add_argument("--new_rank", type=int, default=4, help="Specify rank of output LoRA / 出力するLoRAのrank (dim)")
|
371 |
+
parser.add_argument(
|
372 |
+
"--new_conv_rank",
|
373 |
+
type=int,
|
374 |
+
default=None,
|
375 |
+
help="Specify rank of output LoRA for Conv2d 3x3, None for same as new_rank / 出力するConv2D 3x3 LoRAのrank (dim)、Noneでnew_rankと同じ",
|
376 |
+
)
|
377 |
+
parser.add_argument(
|
378 |
+
"--save_to",
|
379 |
+
type=str,
|
380 |
+
default=None,
|
381 |
+
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors",
|
382 |
+
)
|
383 |
+
parser.add_argument(
|
384 |
+
"--model",
|
385 |
+
type=str,
|
386 |
+
default=None,
|
387 |
+
help="LoRA model to resize at to new rank: ckpt or safetensors file / 読み込むLoRAモデル、ckptまたはsafetensors",
|
388 |
+
)
|
389 |
+
parser.add_argument(
|
390 |
+
"--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う"
|
391 |
+
)
|
392 |
+
parser.add_argument(
|
393 |
+
"--verbose", action="store_true", help="Display verbose resizing information / rank変更時の詳細情報を出力する"
|
394 |
+
)
|
395 |
+
parser.add_argument(
|
396 |
+
"--dynamic_method",
|
397 |
+
type=str,
|
398 |
+
default=None,
|
399 |
+
choices=[None, "sv_ratio", "sv_fro", "sv_cumulative"],
|
400 |
+
help="Specify dynamic resizing method, --new_rank is used as a hard limit for max rank",
|
401 |
+
)
|
402 |
+
parser.add_argument("--dynamic_param", type=float, default=None, help="Specify target for dynamic reduction")
|
403 |
+
|
404 |
+
return parser
|
405 |
+
|
406 |
+
|
407 |
+
if __name__ == "__main__":
|
408 |
+
parser = setup_parser()
|
409 |
+
|
410 |
+
args = parser.parse_args()
|
411 |
+
resize(args)
|