Upload lora-scripts/sd-scripts/networks/extract_lora_from_models.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/networks/extract_lora_from_models.py
ADDED
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# extract approximating LoRA by svd from two SD models
|
2 |
+
# The code is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py
|
3 |
+
# Thanks to cloneofsimo!
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
import json
|
7 |
+
import os
|
8 |
+
import time
|
9 |
+
import torch
|
10 |
+
from safetensors.torch import load_file, save_file
|
11 |
+
from tqdm import tqdm
|
12 |
+
from library import sai_model_spec, model_util, sdxl_model_util
|
13 |
+
import lora
|
14 |
+
from library.utils import setup_logging
|
15 |
+
setup_logging()
|
16 |
+
import logging
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
# CLAMP_QUANTILE = 0.99
|
20 |
+
# MIN_DIFF = 1e-1
|
21 |
+
|
22 |
+
|
23 |
+
def save_to_file(file_name, model, state_dict, dtype):
|
24 |
+
if dtype is not None:
|
25 |
+
for key in list(state_dict.keys()):
|
26 |
+
if type(state_dict[key]) == torch.Tensor:
|
27 |
+
state_dict[key] = state_dict[key].to(dtype)
|
28 |
+
|
29 |
+
if os.path.splitext(file_name)[1] == ".safetensors":
|
30 |
+
save_file(model, file_name)
|
31 |
+
else:
|
32 |
+
torch.save(model, file_name)
|
33 |
+
|
34 |
+
|
35 |
+
def svd(
|
36 |
+
model_org=None,
|
37 |
+
model_tuned=None,
|
38 |
+
save_to=None,
|
39 |
+
dim=4,
|
40 |
+
v2=None,
|
41 |
+
sdxl=None,
|
42 |
+
conv_dim=None,
|
43 |
+
v_parameterization=None,
|
44 |
+
device=None,
|
45 |
+
save_precision=None,
|
46 |
+
clamp_quantile=0.99,
|
47 |
+
min_diff=0.01,
|
48 |
+
no_metadata=False,
|
49 |
+
load_precision=None,
|
50 |
+
load_original_model_to=None,
|
51 |
+
load_tuned_model_to=None,
|
52 |
+
):
|
53 |
+
def str_to_dtype(p):
|
54 |
+
if p == "float":
|
55 |
+
return torch.float
|
56 |
+
if p == "fp16":
|
57 |
+
return torch.float16
|
58 |
+
if p == "bf16":
|
59 |
+
return torch.bfloat16
|
60 |
+
return None
|
61 |
+
|
62 |
+
assert v2 != sdxl or (not v2 and not sdxl), "v2 and sdxl cannot be specified at the same time / v2とsdxlは同時に指定できません"
|
63 |
+
if v_parameterization is None:
|
64 |
+
v_parameterization = v2
|
65 |
+
|
66 |
+
load_dtype = str_to_dtype(load_precision) if load_precision else None
|
67 |
+
save_dtype = str_to_dtype(save_precision)
|
68 |
+
work_device = "cpu"
|
69 |
+
|
70 |
+
# load models
|
71 |
+
if not sdxl:
|
72 |
+
logger.info(f"loading original SD model : {model_org}")
|
73 |
+
text_encoder_o, _, unet_o = model_util.load_models_from_stable_diffusion_checkpoint(v2, model_org)
|
74 |
+
text_encoders_o = [text_encoder_o]
|
75 |
+
if load_dtype is not None:
|
76 |
+
text_encoder_o = text_encoder_o.to(load_dtype)
|
77 |
+
unet_o = unet_o.to(load_dtype)
|
78 |
+
|
79 |
+
logger.info(f"loading tuned SD model : {model_tuned}")
|
80 |
+
text_encoder_t, _, unet_t = model_util.load_models_from_stable_diffusion_checkpoint(v2, model_tuned)
|
81 |
+
text_encoders_t = [text_encoder_t]
|
82 |
+
if load_dtype is not None:
|
83 |
+
text_encoder_t = text_encoder_t.to(load_dtype)
|
84 |
+
unet_t = unet_t.to(load_dtype)
|
85 |
+
|
86 |
+
model_version = model_util.get_model_version_str_for_sd1_sd2(v2, v_parameterization)
|
87 |
+
else:
|
88 |
+
device_org = load_original_model_to if load_original_model_to else "cpu"
|
89 |
+
device_tuned = load_tuned_model_to if load_tuned_model_to else "cpu"
|
90 |
+
|
91 |
+
logger.info(f"loading original SDXL model : {model_org}")
|
92 |
+
text_encoder_o1, text_encoder_o2, _, unet_o, _, _ = sdxl_model_util.load_models_from_sdxl_checkpoint(
|
93 |
+
sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, model_org, device_org
|
94 |
+
)
|
95 |
+
text_encoders_o = [text_encoder_o1, text_encoder_o2]
|
96 |
+
if load_dtype is not None:
|
97 |
+
text_encoder_o1 = text_encoder_o1.to(load_dtype)
|
98 |
+
text_encoder_o2 = text_encoder_o2.to(load_dtype)
|
99 |
+
unet_o = unet_o.to(load_dtype)
|
100 |
+
|
101 |
+
logger.info(f"loading original SDXL model : {model_tuned}")
|
102 |
+
text_encoder_t1, text_encoder_t2, _, unet_t, _, _ = sdxl_model_util.load_models_from_sdxl_checkpoint(
|
103 |
+
sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, model_tuned, device_tuned
|
104 |
+
)
|
105 |
+
text_encoders_t = [text_encoder_t1, text_encoder_t2]
|
106 |
+
if load_dtype is not None:
|
107 |
+
text_encoder_t1 = text_encoder_t1.to(load_dtype)
|
108 |
+
text_encoder_t2 = text_encoder_t2.to(load_dtype)
|
109 |
+
unet_t = unet_t.to(load_dtype)
|
110 |
+
|
111 |
+
model_version = sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0
|
112 |
+
|
113 |
+
# create LoRA network to extract weights: Use dim (rank) as alpha
|
114 |
+
if conv_dim is None:
|
115 |
+
kwargs = {}
|
116 |
+
else:
|
117 |
+
kwargs = {"conv_dim": conv_dim, "conv_alpha": conv_dim}
|
118 |
+
|
119 |
+
lora_network_o = lora.create_network(1.0, dim, dim, None, text_encoders_o, unet_o, **kwargs)
|
120 |
+
lora_network_t = lora.create_network(1.0, dim, dim, None, text_encoders_t, unet_t, **kwargs)
|
121 |
+
assert len(lora_network_o.text_encoder_loras) == len(
|
122 |
+
lora_network_t.text_encoder_loras
|
123 |
+
), f"model version is different (SD1.x vs SD2.x) / それぞれのモデルのバージョンが違います(SD1.xベースとSD2.xベース) "
|
124 |
+
|
125 |
+
# get diffs
|
126 |
+
diffs = {}
|
127 |
+
text_encoder_different = False
|
128 |
+
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.text_encoder_loras, lora_network_t.text_encoder_loras)):
|
129 |
+
lora_name = lora_o.lora_name
|
130 |
+
module_o = lora_o.org_module
|
131 |
+
module_t = lora_t.org_module
|
132 |
+
diff = module_t.weight.to(work_device) - module_o.weight.to(work_device)
|
133 |
+
|
134 |
+
# clear weight to save memory
|
135 |
+
module_o.weight = None
|
136 |
+
module_t.weight = None
|
137 |
+
|
138 |
+
# Text Encoder might be same
|
139 |
+
if not text_encoder_different and torch.max(torch.abs(diff)) > min_diff:
|
140 |
+
text_encoder_different = True
|
141 |
+
logger.info(f"Text encoder is different. {torch.max(torch.abs(diff))} > {min_diff}")
|
142 |
+
|
143 |
+
diffs[lora_name] = diff
|
144 |
+
|
145 |
+
# clear target Text Encoder to save memory
|
146 |
+
for text_encoder in text_encoders_t:
|
147 |
+
del text_encoder
|
148 |
+
|
149 |
+
if not text_encoder_different:
|
150 |
+
logger.warning("Text encoder is same. Extract U-Net only.")
|
151 |
+
lora_network_o.text_encoder_loras = []
|
152 |
+
diffs = {} # clear diffs
|
153 |
+
|
154 |
+
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.unet_loras, lora_network_t.unet_loras)):
|
155 |
+
lora_name = lora_o.lora_name
|
156 |
+
module_o = lora_o.org_module
|
157 |
+
module_t = lora_t.org_module
|
158 |
+
diff = module_t.weight.to(work_device) - module_o.weight.to(work_device)
|
159 |
+
|
160 |
+
# clear weight to save memory
|
161 |
+
module_o.weight = None
|
162 |
+
module_t.weight = None
|
163 |
+
|
164 |
+
diffs[lora_name] = diff
|
165 |
+
|
166 |
+
# clear LoRA network, target U-Net to save memory
|
167 |
+
del lora_network_o
|
168 |
+
del lora_network_t
|
169 |
+
del unet_t
|
170 |
+
|
171 |
+
# make LoRA with svd
|
172 |
+
logger.info("calculating by svd")
|
173 |
+
lora_weights = {}
|
174 |
+
with torch.no_grad():
|
175 |
+
for lora_name, mat in tqdm(list(diffs.items())):
|
176 |
+
if args.device:
|
177 |
+
mat = mat.to(args.device)
|
178 |
+
mat = mat.to(torch.float) # calc by float
|
179 |
+
|
180 |
+
# if conv_dim is None, diffs do not include LoRAs for conv2d-3x3
|
181 |
+
conv2d = len(mat.size()) == 4
|
182 |
+
kernel_size = None if not conv2d else mat.size()[2:4]
|
183 |
+
conv2d_3x3 = conv2d and kernel_size != (1, 1)
|
184 |
+
|
185 |
+
rank = dim if not conv2d_3x3 or conv_dim is None else conv_dim
|
186 |
+
out_dim, in_dim = mat.size()[0:2]
|
187 |
+
|
188 |
+
if device:
|
189 |
+
mat = mat.to(device)
|
190 |
+
|
191 |
+
# logger.info(lora_name, mat.size(), mat.device, rank, in_dim, out_dim)
|
192 |
+
rank = min(rank, in_dim, out_dim) # LoRA rank cannot exceed the original dim
|
193 |
+
|
194 |
+
if conv2d:
|
195 |
+
if conv2d_3x3:
|
196 |
+
mat = mat.flatten(start_dim=1)
|
197 |
+
else:
|
198 |
+
mat = mat.squeeze()
|
199 |
+
|
200 |
+
U, S, Vh = torch.linalg.svd(mat)
|
201 |
+
|
202 |
+
U = U[:, :rank]
|
203 |
+
S = S[:rank]
|
204 |
+
U = U @ torch.diag(S)
|
205 |
+
|
206 |
+
Vh = Vh[:rank, :]
|
207 |
+
|
208 |
+
dist = torch.cat([U.flatten(), Vh.flatten()])
|
209 |
+
hi_val = torch.quantile(dist, clamp_quantile)
|
210 |
+
low_val = -hi_val
|
211 |
+
|
212 |
+
U = U.clamp(low_val, hi_val)
|
213 |
+
Vh = Vh.clamp(low_val, hi_val)
|
214 |
+
|
215 |
+
if conv2d:
|
216 |
+
U = U.reshape(out_dim, rank, 1, 1)
|
217 |
+
Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1])
|
218 |
+
|
219 |
+
U = U.to(work_device, dtype=save_dtype).contiguous()
|
220 |
+
Vh = Vh.to(work_device, dtype=save_dtype).contiguous()
|
221 |
+
|
222 |
+
lora_weights[lora_name] = (U, Vh)
|
223 |
+
|
224 |
+
# make state dict for LoRA
|
225 |
+
lora_sd = {}
|
226 |
+
for lora_name, (up_weight, down_weight) in lora_weights.items():
|
227 |
+
lora_sd[lora_name + ".lora_up.weight"] = up_weight
|
228 |
+
lora_sd[lora_name + ".lora_down.weight"] = down_weight
|
229 |
+
lora_sd[lora_name + ".alpha"] = torch.tensor(down_weight.size()[0])
|
230 |
+
|
231 |
+
# load state dict to LoRA and save it
|
232 |
+
lora_network_save, lora_sd = lora.create_network_from_weights(1.0, None, None, text_encoders_o, unet_o, weights_sd=lora_sd)
|
233 |
+
lora_network_save.apply_to(text_encoders_o, unet_o) # create internal module references for state_dict
|
234 |
+
|
235 |
+
info = lora_network_save.load_state_dict(lora_sd)
|
236 |
+
logger.info(f"Loading extracted LoRA weights: {info}")
|
237 |
+
|
238 |
+
dir_name = os.path.dirname(save_to)
|
239 |
+
if dir_name and not os.path.exists(dir_name):
|
240 |
+
os.makedirs(dir_name, exist_ok=True)
|
241 |
+
|
242 |
+
# minimum metadata
|
243 |
+
net_kwargs = {}
|
244 |
+
if conv_dim is not None:
|
245 |
+
net_kwargs["conv_dim"] = str(conv_dim)
|
246 |
+
net_kwargs["conv_alpha"] = str(float(conv_dim))
|
247 |
+
|
248 |
+
metadata = {
|
249 |
+
"ss_v2": str(v2),
|
250 |
+
"ss_base_model_version": model_version,
|
251 |
+
"ss_network_module": "networks.lora",
|
252 |
+
"ss_network_dim": str(dim),
|
253 |
+
"ss_network_alpha": str(float(dim)),
|
254 |
+
"ss_network_args": json.dumps(net_kwargs),
|
255 |
+
}
|
256 |
+
|
257 |
+
if not no_metadata:
|
258 |
+
title = os.path.splitext(os.path.basename(save_to))[0]
|
259 |
+
sai_metadata = sai_model_spec.build_metadata(None, v2, v_parameterization, sdxl, True, False, time.time(), title=title)
|
260 |
+
metadata.update(sai_metadata)
|
261 |
+
|
262 |
+
lora_network_save.save_weights(save_to, save_dtype, metadata)
|
263 |
+
logger.info(f"LoRA weights are saved to: {save_to}")
|
264 |
+
|
265 |
+
|
266 |
+
def setup_parser() -> argparse.ArgumentParser:
|
267 |
+
parser = argparse.ArgumentParser()
|
268 |
+
parser.add_argument("--v2", action="store_true", help="load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む")
|
269 |
+
parser.add_argument(
|
270 |
+
"--v_parameterization",
|
271 |
+
action="store_true",
|
272 |
+
default=None,
|
273 |
+
help="make LoRA metadata for v-parameterization (default is same to v2) / 作成するLoRAのメタデータにv-parameterization用と設定する(省略時はv2と同じ)",
|
274 |
+
)
|
275 |
+
parser.add_argument(
|
276 |
+
"--sdxl", action="store_true", help="load Stable Diffusion SDXL base model / Stable Diffusion SDXL baseのモデルを読み込む"
|
277 |
+
)
|
278 |
+
parser.add_argument(
|
279 |
+
"--load_precision",
|
280 |
+
type=str,
|
281 |
+
default=None,
|
282 |
+
choices=[None, "float", "fp16", "bf16"],
|
283 |
+
help="precision in loading, model default if omitted / 読み込み時に精度を変更して読み込む、省略時はモデルファイルによる"
|
284 |
+
)
|
285 |
+
parser.add_argument(
|
286 |
+
"--save_precision",
|
287 |
+
type=str,
|
288 |
+
default=None,
|
289 |
+
choices=[None, "float", "fp16", "bf16"],
|
290 |
+
help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はfloat",
|
291 |
+
)
|
292 |
+
parser.add_argument(
|
293 |
+
"--model_org",
|
294 |
+
type=str,
|
295 |
+
default=None,
|
296 |
+
required=True,
|
297 |
+
help="Stable Diffusion original model: ckpt or safetensors file / 元モデル、ckptまたはsafetensors",
|
298 |
+
)
|
299 |
+
parser.add_argument(
|
300 |
+
"--model_tuned",
|
301 |
+
type=str,
|
302 |
+
default=None,
|
303 |
+
required=True,
|
304 |
+
help="Stable Diffusion tuned model, LoRA is difference of `original to tuned`: ckpt or safetensors file / 派生モデル(生成されるLoRAは元→派生の差分になります)、ckptまたはsafetensors",
|
305 |
+
)
|
306 |
+
parser.add_argument(
|
307 |
+
"--save_to",
|
308 |
+
type=str,
|
309 |
+
default=None,
|
310 |
+
required=True,
|
311 |
+
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors",
|
312 |
+
)
|
313 |
+
parser.add_argument("--dim", type=int, default=4, help="dimension (rank) of LoRA (default 4) / LoRAの次元数(rank)(デフォルト4)")
|
314 |
+
parser.add_argument(
|
315 |
+
"--conv_dim",
|
316 |
+
type=int,
|
317 |
+
default=None,
|
318 |
+
help="dimension (rank) of LoRA for Conv2d-3x3 (default None, disabled) / LoRAのConv2d-3x3の次元数(rank)(デフォルトNone、適用なし)",
|
319 |
+
)
|
320 |
+
parser.add_argument("--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う")
|
321 |
+
parser.add_argument(
|
322 |
+
"--clamp_quantile",
|
323 |
+
type=float,
|
324 |
+
default=0.99,
|
325 |
+
help="Quantile clamping value, float, (0-1). Default = 0.99 / 値をクランプするための分位点、float、(0-1)。デフォルトは0.99",
|
326 |
+
)
|
327 |
+
parser.add_argument(
|
328 |
+
"--min_diff",
|
329 |
+
type=float,
|
330 |
+
default=0.01,
|
331 |
+
help="Minimum difference between finetuned model and base to consider them different enough to extract, float, (0-1). Default = 0.01 /"
|
332 |
+
+ "LoRAを抽出するために元モデルと派生モデルの差分の最小値、float、(0-1)。デフォルトは0.01",
|
333 |
+
)
|
334 |
+
parser.add_argument(
|
335 |
+
"--no_metadata",
|
336 |
+
action="store_true",
|
337 |
+
help="do not save sai modelspec metadata (minimum ss_metadata for LoRA is saved) / "
|
338 |
+
+ "sai modelspecのメタデータを保存しない(LoRAの最低限のss_metadataは保存される)",
|
339 |
+
)
|
340 |
+
parser.add_argument(
|
341 |
+
"--load_original_model_to",
|
342 |
+
type=str,
|
343 |
+
default=None,
|
344 |
+
help="location to load original model, cpu or cuda, cuda:0, etc, default is cpu, only for SDXL / 元モデル読み込み先、cpuまたはcuda、cuda:0など、省略時はcpu、SDXLのみ有効",
|
345 |
+
)
|
346 |
+
parser.add_argument(
|
347 |
+
"--load_tuned_model_to",
|
348 |
+
type=str,
|
349 |
+
default=None,
|
350 |
+
help="location to load tuned model, cpu or cuda, cuda:0, etc, default is cpu, only for SDXL / 派生モデル読み込み先、cpuまたはcuda、cuda:0など、省略時はcpu、SDXLのみ有効",
|
351 |
+
)
|
352 |
+
|
353 |
+
return parser
|
354 |
+
|
355 |
+
|
356 |
+
if __name__ == "__main__":
|
357 |
+
parser = setup_parser()
|
358 |
+
|
359 |
+
args = parser.parse_args()
|
360 |
+
svd(**vars(args))
|