Upload lora-scripts/sd-scripts/networks/merge_lora_old.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/networks/merge_lora_old.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import argparse
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
from safetensors.torch import load_file, save_file
|
7 |
+
import library.model_util as model_util
|
8 |
+
import lora
|
9 |
+
from library.utils import setup_logging
|
10 |
+
setup_logging()
|
11 |
+
import logging
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
def load_state_dict(file_name, dtype):
|
15 |
+
if os.path.splitext(file_name)[1] == '.safetensors':
|
16 |
+
sd = load_file(file_name)
|
17 |
+
else:
|
18 |
+
sd = torch.load(file_name, map_location='cpu')
|
19 |
+
for key in list(sd.keys()):
|
20 |
+
if type(sd[key]) == torch.Tensor:
|
21 |
+
sd[key] = sd[key].to(dtype)
|
22 |
+
return sd
|
23 |
+
|
24 |
+
|
25 |
+
def save_to_file(file_name, model, state_dict, dtype):
|
26 |
+
if dtype is not None:
|
27 |
+
for key in list(state_dict.keys()):
|
28 |
+
if type(state_dict[key]) == torch.Tensor:
|
29 |
+
state_dict[key] = state_dict[key].to(dtype)
|
30 |
+
|
31 |
+
if os.path.splitext(file_name)[1] == '.safetensors':
|
32 |
+
save_file(model, file_name)
|
33 |
+
else:
|
34 |
+
torch.save(model, file_name)
|
35 |
+
|
36 |
+
|
37 |
+
def merge_to_sd_model(text_encoder, unet, models, ratios, merge_dtype):
|
38 |
+
text_encoder.to(merge_dtype)
|
39 |
+
unet.to(merge_dtype)
|
40 |
+
|
41 |
+
# create module map
|
42 |
+
name_to_module = {}
|
43 |
+
for i, root_module in enumerate([text_encoder, unet]):
|
44 |
+
if i == 0:
|
45 |
+
prefix = lora.LoRANetwork.LORA_PREFIX_TEXT_ENCODER
|
46 |
+
target_replace_modules = lora.LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE
|
47 |
+
else:
|
48 |
+
prefix = lora.LoRANetwork.LORA_PREFIX_UNET
|
49 |
+
target_replace_modules = lora.LoRANetwork.UNET_TARGET_REPLACE_MODULE
|
50 |
+
|
51 |
+
for name, module in root_module.named_modules():
|
52 |
+
if module.__class__.__name__ in target_replace_modules:
|
53 |
+
for child_name, child_module in module.named_modules():
|
54 |
+
if child_module.__class__.__name__ == "Linear" or (child_module.__class__.__name__ == "Conv2d" and child_module.kernel_size == (1, 1)):
|
55 |
+
lora_name = prefix + '.' + name + '.' + child_name
|
56 |
+
lora_name = lora_name.replace('.', '_')
|
57 |
+
name_to_module[lora_name] = child_module
|
58 |
+
|
59 |
+
for model, ratio in zip(models, ratios):
|
60 |
+
logger.info(f"loading: {model}")
|
61 |
+
lora_sd = load_state_dict(model, merge_dtype)
|
62 |
+
|
63 |
+
logger.info(f"merging...")
|
64 |
+
for key in lora_sd.keys():
|
65 |
+
if "lora_down" in key:
|
66 |
+
up_key = key.replace("lora_down", "lora_up")
|
67 |
+
alpha_key = key[:key.index("lora_down")] + 'alpha'
|
68 |
+
|
69 |
+
# find original module for this lora
|
70 |
+
module_name = '.'.join(key.split('.')[:-2]) # remove trailing ".lora_down.weight"
|
71 |
+
if module_name not in name_to_module:
|
72 |
+
logger.info(f"no module found for LoRA weight: {key}")
|
73 |
+
continue
|
74 |
+
module = name_to_module[module_name]
|
75 |
+
# logger.info(f"apply {key} to {module}")
|
76 |
+
|
77 |
+
down_weight = lora_sd[key]
|
78 |
+
up_weight = lora_sd[up_key]
|
79 |
+
|
80 |
+
dim = down_weight.size()[0]
|
81 |
+
alpha = lora_sd.get(alpha_key, dim)
|
82 |
+
scale = alpha / dim
|
83 |
+
|
84 |
+
# W <- W + U * D
|
85 |
+
weight = module.weight
|
86 |
+
if len(weight.size()) == 2:
|
87 |
+
# linear
|
88 |
+
weight = weight + ratio * (up_weight @ down_weight) * scale
|
89 |
+
else:
|
90 |
+
# conv2d
|
91 |
+
weight = weight + ratio * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) * scale
|
92 |
+
|
93 |
+
module.weight = torch.nn.Parameter(weight)
|
94 |
+
|
95 |
+
|
96 |
+
def merge_lora_models(models, ratios, merge_dtype):
|
97 |
+
merged_sd = {}
|
98 |
+
|
99 |
+
alpha = None
|
100 |
+
dim = None
|
101 |
+
for model, ratio in zip(models, ratios):
|
102 |
+
logger.info(f"loading: {model}")
|
103 |
+
lora_sd = load_state_dict(model, merge_dtype)
|
104 |
+
|
105 |
+
logger.info(f"merging...")
|
106 |
+
for key in lora_sd.keys():
|
107 |
+
if 'alpha' in key:
|
108 |
+
if key in merged_sd:
|
109 |
+
assert merged_sd[key] == lora_sd[key], f"alpha mismatch / alphaが異なる場合、現時点ではマージできません"
|
110 |
+
else:
|
111 |
+
alpha = lora_sd[key].detach().numpy()
|
112 |
+
merged_sd[key] = lora_sd[key]
|
113 |
+
else:
|
114 |
+
if key in merged_sd:
|
115 |
+
assert merged_sd[key].size() == lora_sd[key].size(
|
116 |
+
), f"weights shape mismatch merging v1 and v2, different dims? / 重みのサイズが合いません。v1とv2、または次元数の異なるモデルはマージできません"
|
117 |
+
merged_sd[key] = merged_sd[key] + lora_sd[key] * ratio
|
118 |
+
else:
|
119 |
+
if "lora_down" in key:
|
120 |
+
dim = lora_sd[key].size()[0]
|
121 |
+
merged_sd[key] = lora_sd[key] * ratio
|
122 |
+
|
123 |
+
logger.info(f"dim (rank): {dim}, alpha: {alpha}")
|
124 |
+
if alpha is None:
|
125 |
+
alpha = dim
|
126 |
+
|
127 |
+
return merged_sd, dim, alpha
|
128 |
+
|
129 |
+
|
130 |
+
def merge(args):
|
131 |
+
assert len(args.models) == len(args.ratios), f"number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください"
|
132 |
+
|
133 |
+
def str_to_dtype(p):
|
134 |
+
if p == 'float':
|
135 |
+
return torch.float
|
136 |
+
if p == 'fp16':
|
137 |
+
return torch.float16
|
138 |
+
if p == 'bf16':
|
139 |
+
return torch.bfloat16
|
140 |
+
return None
|
141 |
+
|
142 |
+
merge_dtype = str_to_dtype(args.precision)
|
143 |
+
save_dtype = str_to_dtype(args.save_precision)
|
144 |
+
if save_dtype is None:
|
145 |
+
save_dtype = merge_dtype
|
146 |
+
|
147 |
+
if args.sd_model is not None:
|
148 |
+
logger.info(f"loading SD model: {args.sd_model}")
|
149 |
+
|
150 |
+
text_encoder, vae, unet = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.sd_model)
|
151 |
+
|
152 |
+
merge_to_sd_model(text_encoder, unet, args.models, args.ratios, merge_dtype)
|
153 |
+
|
154 |
+
logger.info("")
|
155 |
+
logger.info(f"saving SD model to: {args.save_to}")
|
156 |
+
model_util.save_stable_diffusion_checkpoint(args.v2, args.save_to, text_encoder, unet,
|
157 |
+
args.sd_model, 0, 0, save_dtype, vae)
|
158 |
+
else:
|
159 |
+
state_dict, _, _ = merge_lora_models(args.models, args.ratios, merge_dtype)
|
160 |
+
|
161 |
+
logger.info(f"")
|
162 |
+
logger.info(f"saving model to: {args.save_to}")
|
163 |
+
save_to_file(args.save_to, state_dict, state_dict, save_dtype)
|
164 |
+
|
165 |
+
|
166 |
+
def setup_parser() -> argparse.ArgumentParser:
|
167 |
+
parser = argparse.ArgumentParser()
|
168 |
+
parser.add_argument("--v2", action='store_true',
|
169 |
+
help='load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む')
|
170 |
+
parser.add_argument("--save_precision", type=str, default=None,
|
171 |
+
choices=[None, "float", "fp16", "bf16"], help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ")
|
172 |
+
parser.add_argument("--precision", type=str, default="float",
|
173 |
+
choices=["float", "fp16", "bf16"], help="precision in merging (float is recommended) / マージの計算時の精度(floatを推奨)")
|
174 |
+
parser.add_argument("--sd_model", type=str, default=None,
|
175 |
+
help="Stable Diffusion model to load: ckpt or safetensors file, merge LoRA models if omitted / 読み込むモデル、ckptまたはsafetensors。省略時はLoRAモデル同士をマージする")
|
176 |
+
parser.add_argument("--save_to", type=str, default=None,
|
177 |
+
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors")
|
178 |
+
parser.add_argument("--models", type=str, nargs='*',
|
179 |
+
help="LoRA models to merge: ckpt or safetensors file / マージするLoRAモデル、ckptまたはsafetensors")
|
180 |
+
parser.add_argument("--ratios", type=float, nargs='*',
|
181 |
+
help="ratios for each model / それぞれのLoRAモデルの比率")
|
182 |
+
|
183 |
+
return parser
|
184 |
+
|
185 |
+
|
186 |
+
if __name__ == '__main__':
|
187 |
+
parser = setup_parser()
|
188 |
+
|
189 |
+
args = parser.parse_args()
|
190 |
+
merge(args)
|