Upload lora-scripts/sd-scripts/library/sdxl_original_unet.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/library/sdxl_original_unet.py
ADDED
@@ -0,0 +1,1286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Diffusersのコードをベースとした sd_xl_baseのU-Net
|
2 |
+
# state dictの形式をSDXLに合わせてある
|
3 |
+
|
4 |
+
"""
|
5 |
+
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
6 |
+
params:
|
7 |
+
adm_in_channels: 2816
|
8 |
+
num_classes: sequential
|
9 |
+
use_checkpoint: True
|
10 |
+
in_channels: 4
|
11 |
+
out_channels: 4
|
12 |
+
model_channels: 320
|
13 |
+
attention_resolutions: [4, 2]
|
14 |
+
num_res_blocks: 2
|
15 |
+
channel_mult: [1, 2, 4]
|
16 |
+
num_head_channels: 64
|
17 |
+
use_spatial_transformer: True
|
18 |
+
use_linear_in_transformer: True
|
19 |
+
transformer_depth: [1, 2, 10] # note: the first is unused (due to attn_res starting at 2) 32, 16, 8 --> 64, 32, 16
|
20 |
+
context_dim: 2048
|
21 |
+
spatial_transformer_attn_type: softmax-xformers
|
22 |
+
legacy: False
|
23 |
+
"""
|
24 |
+
|
25 |
+
import math
|
26 |
+
from types import SimpleNamespace
|
27 |
+
from typing import Any, Optional
|
28 |
+
import torch
|
29 |
+
import torch.utils.checkpoint
|
30 |
+
from torch import nn
|
31 |
+
from torch.nn import functional as F
|
32 |
+
from einops import rearrange
|
33 |
+
from .utils import setup_logging
|
34 |
+
|
35 |
+
setup_logging()
|
36 |
+
import logging
|
37 |
+
|
38 |
+
logger = logging.getLogger(__name__)
|
39 |
+
|
40 |
+
IN_CHANNELS: int = 4
|
41 |
+
OUT_CHANNELS: int = 4
|
42 |
+
ADM_IN_CHANNELS: int = 2816
|
43 |
+
CONTEXT_DIM: int = 2048
|
44 |
+
MODEL_CHANNELS: int = 320
|
45 |
+
TIME_EMBED_DIM = 320 * 4
|
46 |
+
|
47 |
+
USE_REENTRANT = True
|
48 |
+
|
49 |
+
# region memory efficient attention
|
50 |
+
|
51 |
+
# FlashAttentionを使うCrossAttention
|
52 |
+
# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py
|
53 |
+
# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE
|
54 |
+
|
55 |
+
# constants
|
56 |
+
|
57 |
+
EPSILON = 1e-6
|
58 |
+
|
59 |
+
# helper functions
|
60 |
+
|
61 |
+
|
62 |
+
def exists(val):
|
63 |
+
return val is not None
|
64 |
+
|
65 |
+
|
66 |
+
def default(val, d):
|
67 |
+
return val if exists(val) else d
|
68 |
+
|
69 |
+
|
70 |
+
# flash attention forwards and backwards
|
71 |
+
|
72 |
+
# https://arxiv.org/abs/2205.14135
|
73 |
+
|
74 |
+
|
75 |
+
class FlashAttentionFunction(torch.autograd.Function):
|
76 |
+
@staticmethod
|
77 |
+
@torch.no_grad()
|
78 |
+
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
|
79 |
+
"""Algorithm 2 in the paper"""
|
80 |
+
|
81 |
+
device = q.device
|
82 |
+
dtype = q.dtype
|
83 |
+
max_neg_value = -torch.finfo(q.dtype).max
|
84 |
+
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
85 |
+
|
86 |
+
o = torch.zeros_like(q)
|
87 |
+
all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device)
|
88 |
+
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device)
|
89 |
+
|
90 |
+
scale = q.shape[-1] ** -0.5
|
91 |
+
|
92 |
+
if not exists(mask):
|
93 |
+
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
|
94 |
+
else:
|
95 |
+
mask = rearrange(mask, "b n -> b 1 1 n")
|
96 |
+
mask = mask.split(q_bucket_size, dim=-1)
|
97 |
+
|
98 |
+
row_splits = zip(
|
99 |
+
q.split(q_bucket_size, dim=-2),
|
100 |
+
o.split(q_bucket_size, dim=-2),
|
101 |
+
mask,
|
102 |
+
all_row_sums.split(q_bucket_size, dim=-2),
|
103 |
+
all_row_maxes.split(q_bucket_size, dim=-2),
|
104 |
+
)
|
105 |
+
|
106 |
+
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
|
107 |
+
q_start_index = ind * q_bucket_size - qk_len_diff
|
108 |
+
|
109 |
+
col_splits = zip(
|
110 |
+
k.split(k_bucket_size, dim=-2),
|
111 |
+
v.split(k_bucket_size, dim=-2),
|
112 |
+
)
|
113 |
+
|
114 |
+
for k_ind, (kc, vc) in enumerate(col_splits):
|
115 |
+
k_start_index = k_ind * k_bucket_size
|
116 |
+
|
117 |
+
attn_weights = torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale
|
118 |
+
|
119 |
+
if exists(row_mask):
|
120 |
+
attn_weights.masked_fill_(~row_mask, max_neg_value)
|
121 |
+
|
122 |
+
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
123 |
+
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu(
|
124 |
+
q_start_index - k_start_index + 1
|
125 |
+
)
|
126 |
+
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
127 |
+
|
128 |
+
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
|
129 |
+
attn_weights -= block_row_maxes
|
130 |
+
exp_weights = torch.exp(attn_weights)
|
131 |
+
|
132 |
+
if exists(row_mask):
|
133 |
+
exp_weights.masked_fill_(~row_mask, 0.0)
|
134 |
+
|
135 |
+
block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON)
|
136 |
+
|
137 |
+
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
|
138 |
+
|
139 |
+
exp_values = torch.einsum("... i j, ... j d -> ... i d", exp_weights, vc)
|
140 |
+
|
141 |
+
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
|
142 |
+
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
|
143 |
+
|
144 |
+
new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums
|
145 |
+
|
146 |
+
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values)
|
147 |
+
|
148 |
+
row_maxes.copy_(new_row_maxes)
|
149 |
+
row_sums.copy_(new_row_sums)
|
150 |
+
|
151 |
+
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
|
152 |
+
ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes)
|
153 |
+
|
154 |
+
return o
|
155 |
+
|
156 |
+
@staticmethod
|
157 |
+
@torch.no_grad()
|
158 |
+
def backward(ctx, do):
|
159 |
+
"""Algorithm 4 in the paper"""
|
160 |
+
|
161 |
+
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
|
162 |
+
q, k, v, o, l, m = ctx.saved_tensors
|
163 |
+
|
164 |
+
device = q.device
|
165 |
+
|
166 |
+
max_neg_value = -torch.finfo(q.dtype).max
|
167 |
+
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
168 |
+
|
169 |
+
dq = torch.zeros_like(q)
|
170 |
+
dk = torch.zeros_like(k)
|
171 |
+
dv = torch.zeros_like(v)
|
172 |
+
|
173 |
+
row_splits = zip(
|
174 |
+
q.split(q_bucket_size, dim=-2),
|
175 |
+
o.split(q_bucket_size, dim=-2),
|
176 |
+
do.split(q_bucket_size, dim=-2),
|
177 |
+
mask,
|
178 |
+
l.split(q_bucket_size, dim=-2),
|
179 |
+
m.split(q_bucket_size, dim=-2),
|
180 |
+
dq.split(q_bucket_size, dim=-2),
|
181 |
+
)
|
182 |
+
|
183 |
+
for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits):
|
184 |
+
q_start_index = ind * q_bucket_size - qk_len_diff
|
185 |
+
|
186 |
+
col_splits = zip(
|
187 |
+
k.split(k_bucket_size, dim=-2),
|
188 |
+
v.split(k_bucket_size, dim=-2),
|
189 |
+
dk.split(k_bucket_size, dim=-2),
|
190 |
+
dv.split(k_bucket_size, dim=-2),
|
191 |
+
)
|
192 |
+
|
193 |
+
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
|
194 |
+
k_start_index = k_ind * k_bucket_size
|
195 |
+
|
196 |
+
attn_weights = torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale
|
197 |
+
|
198 |
+
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
199 |
+
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu(
|
200 |
+
q_start_index - k_start_index + 1
|
201 |
+
)
|
202 |
+
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
203 |
+
|
204 |
+
exp_attn_weights = torch.exp(attn_weights - mc)
|
205 |
+
|
206 |
+
if exists(row_mask):
|
207 |
+
exp_attn_weights.masked_fill_(~row_mask, 0.0)
|
208 |
+
|
209 |
+
p = exp_attn_weights / lc
|
210 |
+
|
211 |
+
dv_chunk = torch.einsum("... i j, ... i d -> ... j d", p, doc)
|
212 |
+
dp = torch.einsum("... i d, ... j d -> ... i j", doc, vc)
|
213 |
+
|
214 |
+
D = (doc * oc).sum(dim=-1, keepdims=True)
|
215 |
+
ds = p * scale * (dp - D)
|
216 |
+
|
217 |
+
dq_chunk = torch.einsum("... i j, ... j d -> ... i d", ds, kc)
|
218 |
+
dk_chunk = torch.einsum("... i j, ... i d -> ... j d", ds, qc)
|
219 |
+
|
220 |
+
dqc.add_(dq_chunk)
|
221 |
+
dkc.add_(dk_chunk)
|
222 |
+
dvc.add_(dv_chunk)
|
223 |
+
|
224 |
+
return dq, dk, dv, None, None, None, None
|
225 |
+
|
226 |
+
|
227 |
+
# endregion
|
228 |
+
|
229 |
+
|
230 |
+
def get_parameter_dtype(parameter: torch.nn.Module):
|
231 |
+
return next(parameter.parameters()).dtype
|
232 |
+
|
233 |
+
|
234 |
+
def get_parameter_device(parameter: torch.nn.Module):
|
235 |
+
return next(parameter.parameters()).device
|
236 |
+
|
237 |
+
|
238 |
+
def get_timestep_embedding(
|
239 |
+
timesteps: torch.Tensor,
|
240 |
+
embedding_dim: int,
|
241 |
+
downscale_freq_shift: float = 1,
|
242 |
+
scale: float = 1,
|
243 |
+
max_period: int = 10000,
|
244 |
+
):
|
245 |
+
"""
|
246 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
|
247 |
+
|
248 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
249 |
+
These may be fractional.
|
250 |
+
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
|
251 |
+
embeddings. :return: an [N x dim] Tensor of positional embeddings.
|
252 |
+
"""
|
253 |
+
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
|
254 |
+
|
255 |
+
half_dim = embedding_dim // 2
|
256 |
+
exponent = -math.log(max_period) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device)
|
257 |
+
exponent = exponent / (half_dim - downscale_freq_shift)
|
258 |
+
|
259 |
+
emb = torch.exp(exponent)
|
260 |
+
emb = timesteps[:, None].float() * emb[None, :]
|
261 |
+
|
262 |
+
# scale embeddings
|
263 |
+
emb = scale * emb
|
264 |
+
|
265 |
+
# concat sine and cosine embeddings: flipped from Diffusers original ver because always flip_sin_to_cos=True
|
266 |
+
emb = torch.cat([torch.cos(emb), torch.sin(emb)], dim=-1)
|
267 |
+
|
268 |
+
# zero pad
|
269 |
+
if embedding_dim % 2 == 1:
|
270 |
+
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
271 |
+
return emb
|
272 |
+
|
273 |
+
|
274 |
+
# Deep Shrink: We do not common this function, because minimize dependencies.
|
275 |
+
def resize_like(x, target, mode="bicubic", align_corners=False):
|
276 |
+
org_dtype = x.dtype
|
277 |
+
if org_dtype == torch.bfloat16:
|
278 |
+
x = x.to(torch.float32)
|
279 |
+
|
280 |
+
if x.shape[-2:] != target.shape[-2:]:
|
281 |
+
if mode == "nearest":
|
282 |
+
x = F.interpolate(x, size=target.shape[-2:], mode=mode)
|
283 |
+
else:
|
284 |
+
x = F.interpolate(x, size=target.shape[-2:], mode=mode, align_corners=align_corners)
|
285 |
+
|
286 |
+
if org_dtype == torch.bfloat16:
|
287 |
+
x = x.to(org_dtype)
|
288 |
+
return x
|
289 |
+
|
290 |
+
|
291 |
+
class GroupNorm32(nn.GroupNorm):
|
292 |
+
def forward(self, x):
|
293 |
+
if self.weight.dtype != torch.float32:
|
294 |
+
return super().forward(x)
|
295 |
+
return super().forward(x.float()).type(x.dtype)
|
296 |
+
|
297 |
+
|
298 |
+
class ResnetBlock2D(nn.Module):
|
299 |
+
def __init__(
|
300 |
+
self,
|
301 |
+
in_channels,
|
302 |
+
out_channels,
|
303 |
+
):
|
304 |
+
super().__init__()
|
305 |
+
self.in_channels = in_channels
|
306 |
+
self.out_channels = out_channels
|
307 |
+
|
308 |
+
self.in_layers = nn.Sequential(
|
309 |
+
GroupNorm32(32, in_channels),
|
310 |
+
nn.SiLU(),
|
311 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1),
|
312 |
+
)
|
313 |
+
|
314 |
+
self.emb_layers = nn.Sequential(nn.SiLU(), nn.Linear(TIME_EMBED_DIM, out_channels))
|
315 |
+
|
316 |
+
self.out_layers = nn.Sequential(
|
317 |
+
GroupNorm32(32, out_channels),
|
318 |
+
nn.SiLU(),
|
319 |
+
nn.Identity(), # to make state_dict compatible with original model
|
320 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
|
321 |
+
)
|
322 |
+
|
323 |
+
if in_channels != out_channels:
|
324 |
+
self.skip_connection = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
325 |
+
else:
|
326 |
+
self.skip_connection = nn.Identity()
|
327 |
+
|
328 |
+
self.gradient_checkpointing = False
|
329 |
+
|
330 |
+
def forward_body(self, x, emb):
|
331 |
+
h = self.in_layers(x)
|
332 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
333 |
+
h = h + emb_out[:, :, None, None]
|
334 |
+
h = self.out_layers(h)
|
335 |
+
x = self.skip_connection(x)
|
336 |
+
return x + h
|
337 |
+
|
338 |
+
def forward(self, x, emb):
|
339 |
+
if self.training and self.gradient_checkpointing:
|
340 |
+
# logger.info("ResnetBlock2D: gradient_checkpointing")
|
341 |
+
|
342 |
+
def create_custom_forward(func):
|
343 |
+
def custom_forward(*inputs):
|
344 |
+
return func(*inputs)
|
345 |
+
|
346 |
+
return custom_forward
|
347 |
+
|
348 |
+
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.forward_body), x, emb, use_reentrant=USE_REENTRANT)
|
349 |
+
else:
|
350 |
+
x = self.forward_body(x, emb)
|
351 |
+
|
352 |
+
return x
|
353 |
+
|
354 |
+
|
355 |
+
class Downsample2D(nn.Module):
|
356 |
+
def __init__(self, channels, out_channels):
|
357 |
+
super().__init__()
|
358 |
+
|
359 |
+
self.channels = channels
|
360 |
+
self.out_channels = out_channels
|
361 |
+
|
362 |
+
self.op = nn.Conv2d(self.channels, self.out_channels, 3, stride=2, padding=1)
|
363 |
+
|
364 |
+
self.gradient_checkpointing = False
|
365 |
+
|
366 |
+
def forward_body(self, hidden_states):
|
367 |
+
assert hidden_states.shape[1] == self.channels
|
368 |
+
hidden_states = self.op(hidden_states)
|
369 |
+
|
370 |
+
return hidden_states
|
371 |
+
|
372 |
+
def forward(self, hidden_states):
|
373 |
+
if self.training and self.gradient_checkpointing:
|
374 |
+
# logger.info("Downsample2D: gradient_checkpointing")
|
375 |
+
|
376 |
+
def create_custom_forward(func):
|
377 |
+
def custom_forward(*inputs):
|
378 |
+
return func(*inputs)
|
379 |
+
|
380 |
+
return custom_forward
|
381 |
+
|
382 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
383 |
+
create_custom_forward(self.forward_body), hidden_states, use_reentrant=USE_REENTRANT
|
384 |
+
)
|
385 |
+
else:
|
386 |
+
hidden_states = self.forward_body(hidden_states)
|
387 |
+
|
388 |
+
return hidden_states
|
389 |
+
|
390 |
+
|
391 |
+
class CrossAttention(nn.Module):
|
392 |
+
def __init__(
|
393 |
+
self,
|
394 |
+
query_dim: int,
|
395 |
+
cross_attention_dim: Optional[int] = None,
|
396 |
+
heads: int = 8,
|
397 |
+
dim_head: int = 64,
|
398 |
+
upcast_attention: bool = False,
|
399 |
+
):
|
400 |
+
super().__init__()
|
401 |
+
inner_dim = dim_head * heads
|
402 |
+
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
|
403 |
+
self.upcast_attention = upcast_attention
|
404 |
+
|
405 |
+
self.scale = dim_head**-0.5
|
406 |
+
self.heads = heads
|
407 |
+
|
408 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
409 |
+
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=False)
|
410 |
+
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=False)
|
411 |
+
|
412 |
+
self.to_out = nn.ModuleList([])
|
413 |
+
self.to_out.append(nn.Linear(inner_dim, query_dim))
|
414 |
+
# no dropout here
|
415 |
+
|
416 |
+
self.use_memory_efficient_attention_xformers = False
|
417 |
+
self.use_memory_efficient_attention_mem_eff = False
|
418 |
+
self.use_sdpa = False
|
419 |
+
|
420 |
+
def set_use_memory_efficient_attention(self, xformers, mem_eff):
|
421 |
+
self.use_memory_efficient_attention_xformers = xformers
|
422 |
+
self.use_memory_efficient_attention_mem_eff = mem_eff
|
423 |
+
|
424 |
+
def set_use_sdpa(self, sdpa):
|
425 |
+
self.use_sdpa = sdpa
|
426 |
+
|
427 |
+
def reshape_heads_to_batch_dim(self, tensor):
|
428 |
+
batch_size, seq_len, dim = tensor.shape
|
429 |
+
head_size = self.heads
|
430 |
+
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
|
431 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
|
432 |
+
return tensor
|
433 |
+
|
434 |
+
def reshape_batch_dim_to_heads(self, tensor):
|
435 |
+
batch_size, seq_len, dim = tensor.shape
|
436 |
+
head_size = self.heads
|
437 |
+
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
|
438 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
|
439 |
+
return tensor
|
440 |
+
|
441 |
+
def forward(self, hidden_states, context=None, mask=None):
|
442 |
+
if self.use_memory_efficient_attention_xformers:
|
443 |
+
return self.forward_memory_efficient_xformers(hidden_states, context, mask)
|
444 |
+
if self.use_memory_efficient_attention_mem_eff:
|
445 |
+
return self.forward_memory_efficient_mem_eff(hidden_states, context, mask)
|
446 |
+
if self.use_sdpa:
|
447 |
+
return self.forward_sdpa(hidden_states, context, mask)
|
448 |
+
|
449 |
+
query = self.to_q(hidden_states)
|
450 |
+
context = context if context is not None else hidden_states
|
451 |
+
key = self.to_k(context)
|
452 |
+
value = self.to_v(context)
|
453 |
+
|
454 |
+
query = self.reshape_heads_to_batch_dim(query)
|
455 |
+
key = self.reshape_heads_to_batch_dim(key)
|
456 |
+
value = self.reshape_heads_to_batch_dim(value)
|
457 |
+
|
458 |
+
hidden_states = self._attention(query, key, value)
|
459 |
+
|
460 |
+
# linear proj
|
461 |
+
hidden_states = self.to_out[0](hidden_states)
|
462 |
+
# hidden_states = self.to_out[1](hidden_states) # no dropout
|
463 |
+
return hidden_states
|
464 |
+
|
465 |
+
def _attention(self, query, key, value):
|
466 |
+
if self.upcast_attention:
|
467 |
+
query = query.float()
|
468 |
+
key = key.float()
|
469 |
+
|
470 |
+
attention_scores = torch.baddbmm(
|
471 |
+
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
|
472 |
+
query,
|
473 |
+
key.transpose(-1, -2),
|
474 |
+
beta=0,
|
475 |
+
alpha=self.scale,
|
476 |
+
)
|
477 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
478 |
+
|
479 |
+
# cast back to the original dtype
|
480 |
+
attention_probs = attention_probs.to(value.dtype)
|
481 |
+
|
482 |
+
# compute attention output
|
483 |
+
hidden_states = torch.bmm(attention_probs, value)
|
484 |
+
|
485 |
+
# reshape hidden_states
|
486 |
+
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
487 |
+
return hidden_states
|
488 |
+
|
489 |
+
# TODO support Hypernetworks
|
490 |
+
def forward_memory_efficient_xformers(self, x, context=None, mask=None):
|
491 |
+
import xformers.ops
|
492 |
+
|
493 |
+
h = self.heads
|
494 |
+
q_in = self.to_q(x)
|
495 |
+
context = context if context is not None else x
|
496 |
+
context = context.to(x.dtype)
|
497 |
+
k_in = self.to_k(context)
|
498 |
+
v_in = self.to_v(context)
|
499 |
+
|
500 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b n h d", h=h), (q_in, k_in, v_in))
|
501 |
+
del q_in, k_in, v_in
|
502 |
+
|
503 |
+
q = q.contiguous()
|
504 |
+
k = k.contiguous()
|
505 |
+
v = v.contiguous()
|
506 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる
|
507 |
+
del q, k, v
|
508 |
+
|
509 |
+
out = rearrange(out, "b n h d -> b n (h d)", h=h)
|
510 |
+
|
511 |
+
out = self.to_out[0](out)
|
512 |
+
return out
|
513 |
+
|
514 |
+
def forward_memory_efficient_mem_eff(self, x, context=None, mask=None):
|
515 |
+
flash_func = FlashAttentionFunction
|
516 |
+
|
517 |
+
q_bucket_size = 512
|
518 |
+
k_bucket_size = 1024
|
519 |
+
|
520 |
+
h = self.heads
|
521 |
+
q = self.to_q(x)
|
522 |
+
context = context if context is not None else x
|
523 |
+
context = context.to(x.dtype)
|
524 |
+
k = self.to_k(context)
|
525 |
+
v = self.to_v(context)
|
526 |
+
del context, x
|
527 |
+
|
528 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))
|
529 |
+
|
530 |
+
out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size)
|
531 |
+
|
532 |
+
out = rearrange(out, "b h n d -> b n (h d)")
|
533 |
+
|
534 |
+
out = self.to_out[0](out)
|
535 |
+
return out
|
536 |
+
|
537 |
+
def forward_sdpa(self, x, context=None, mask=None):
|
538 |
+
h = self.heads
|
539 |
+
q_in = self.to_q(x)
|
540 |
+
context = context if context is not None else x
|
541 |
+
context = context.to(x.dtype)
|
542 |
+
k_in = self.to_k(context)
|
543 |
+
v_in = self.to_v(context)
|
544 |
+
|
545 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q_in, k_in, v_in))
|
546 |
+
del q_in, k_in, v_in
|
547 |
+
|
548 |
+
out = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
|
549 |
+
|
550 |
+
out = rearrange(out, "b h n d -> b n (h d)", h=h)
|
551 |
+
|
552 |
+
out = self.to_out[0](out)
|
553 |
+
return out
|
554 |
+
|
555 |
+
|
556 |
+
# feedforward
|
557 |
+
class GEGLU(nn.Module):
|
558 |
+
r"""
|
559 |
+
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
|
560 |
+
|
561 |
+
Parameters:
|
562 |
+
dim_in (`int`): The number of channels in the input.
|
563 |
+
dim_out (`int`): The number of channels in the output.
|
564 |
+
"""
|
565 |
+
|
566 |
+
def __init__(self, dim_in: int, dim_out: int):
|
567 |
+
super().__init__()
|
568 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
569 |
+
|
570 |
+
def gelu(self, gate):
|
571 |
+
if gate.device.type != "mps":
|
572 |
+
return F.gelu(gate)
|
573 |
+
# mps: gelu is not implemented for float16
|
574 |
+
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
|
575 |
+
|
576 |
+
def forward(self, hidden_states):
|
577 |
+
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
|
578 |
+
return hidden_states * self.gelu(gate)
|
579 |
+
|
580 |
+
|
581 |
+
class FeedForward(nn.Module):
|
582 |
+
def __init__(
|
583 |
+
self,
|
584 |
+
dim: int,
|
585 |
+
):
|
586 |
+
super().__init__()
|
587 |
+
inner_dim = int(dim * 4) # mult is always 4
|
588 |
+
|
589 |
+
self.net = nn.ModuleList([])
|
590 |
+
# project in
|
591 |
+
self.net.append(GEGLU(dim, inner_dim))
|
592 |
+
# project dropout
|
593 |
+
self.net.append(nn.Identity()) # nn.Dropout(0)) # dummy for dropout with 0
|
594 |
+
# project out
|
595 |
+
self.net.append(nn.Linear(inner_dim, dim))
|
596 |
+
|
597 |
+
def forward(self, hidden_states):
|
598 |
+
for module in self.net:
|
599 |
+
hidden_states = module(hidden_states)
|
600 |
+
return hidden_states
|
601 |
+
|
602 |
+
|
603 |
+
class BasicTransformerBlock(nn.Module):
|
604 |
+
def __init__(
|
605 |
+
self, dim: int, num_attention_heads: int, attention_head_dim: int, cross_attention_dim: int, upcast_attention: bool = False
|
606 |
+
):
|
607 |
+
super().__init__()
|
608 |
+
|
609 |
+
self.gradient_checkpointing = False
|
610 |
+
|
611 |
+
# 1. Self-Attn
|
612 |
+
self.attn1 = CrossAttention(
|
613 |
+
query_dim=dim,
|
614 |
+
cross_attention_dim=None,
|
615 |
+
heads=num_attention_heads,
|
616 |
+
dim_head=attention_head_dim,
|
617 |
+
upcast_attention=upcast_attention,
|
618 |
+
)
|
619 |
+
self.ff = FeedForward(dim)
|
620 |
+
|
621 |
+
# 2. Cross-Attn
|
622 |
+
self.attn2 = CrossAttention(
|
623 |
+
query_dim=dim,
|
624 |
+
cross_attention_dim=cross_attention_dim,
|
625 |
+
heads=num_attention_heads,
|
626 |
+
dim_head=attention_head_dim,
|
627 |
+
upcast_attention=upcast_attention,
|
628 |
+
)
|
629 |
+
|
630 |
+
self.norm1 = nn.LayerNorm(dim)
|
631 |
+
self.norm2 = nn.LayerNorm(dim)
|
632 |
+
|
633 |
+
# 3. Feed-forward
|
634 |
+
self.norm3 = nn.LayerNorm(dim)
|
635 |
+
|
636 |
+
def set_use_memory_efficient_attention(self, xformers: bool, mem_eff: bool):
|
637 |
+
self.attn1.set_use_memory_efficient_attention(xformers, mem_eff)
|
638 |
+
self.attn2.set_use_memory_efficient_attention(xformers, mem_eff)
|
639 |
+
|
640 |
+
def set_use_sdpa(self, sdpa: bool):
|
641 |
+
self.attn1.set_use_sdpa(sdpa)
|
642 |
+
self.attn2.set_use_sdpa(sdpa)
|
643 |
+
|
644 |
+
def forward_body(self, hidden_states, context=None, timestep=None):
|
645 |
+
# 1. Self-Attention
|
646 |
+
norm_hidden_states = self.norm1(hidden_states)
|
647 |
+
|
648 |
+
hidden_states = self.attn1(norm_hidden_states) + hidden_states
|
649 |
+
|
650 |
+
# 2. Cross-Attention
|
651 |
+
norm_hidden_states = self.norm2(hidden_states)
|
652 |
+
hidden_states = self.attn2(norm_hidden_states, context=context) + hidden_states
|
653 |
+
|
654 |
+
# 3. Feed-forward
|
655 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
656 |
+
|
657 |
+
return hidden_states
|
658 |
+
|
659 |
+
def forward(self, hidden_states, context=None, timestep=None):
|
660 |
+
if self.training and self.gradient_checkpointing:
|
661 |
+
# logger.info("BasicTransformerBlock: checkpointing")
|
662 |
+
|
663 |
+
def create_custom_forward(func):
|
664 |
+
def custom_forward(*inputs):
|
665 |
+
return func(*inputs)
|
666 |
+
|
667 |
+
return custom_forward
|
668 |
+
|
669 |
+
output = torch.utils.checkpoint.checkpoint(
|
670 |
+
create_custom_forward(self.forward_body), hidden_states, context, timestep, use_reentrant=USE_REENTRANT
|
671 |
+
)
|
672 |
+
else:
|
673 |
+
output = self.forward_body(hidden_states, context, timestep)
|
674 |
+
|
675 |
+
return output
|
676 |
+
|
677 |
+
|
678 |
+
class Transformer2DModel(nn.Module):
|
679 |
+
def __init__(
|
680 |
+
self,
|
681 |
+
num_attention_heads: int = 16,
|
682 |
+
attention_head_dim: int = 88,
|
683 |
+
in_channels: Optional[int] = None,
|
684 |
+
cross_attention_dim: Optional[int] = None,
|
685 |
+
use_linear_projection: bool = False,
|
686 |
+
upcast_attention: bool = False,
|
687 |
+
num_transformer_layers: int = 1,
|
688 |
+
):
|
689 |
+
super().__init__()
|
690 |
+
self.in_channels = in_channels
|
691 |
+
self.num_attention_heads = num_attention_heads
|
692 |
+
self.attention_head_dim = attention_head_dim
|
693 |
+
inner_dim = num_attention_heads * attention_head_dim
|
694 |
+
self.use_linear_projection = use_linear_projection
|
695 |
+
|
696 |
+
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
697 |
+
# self.norm = GroupNorm32(32, in_channels, eps=1e-6, affine=True)
|
698 |
+
|
699 |
+
if use_linear_projection:
|
700 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
701 |
+
else:
|
702 |
+
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
703 |
+
|
704 |
+
blocks = []
|
705 |
+
for _ in range(num_transformer_layers):
|
706 |
+
blocks.append(
|
707 |
+
BasicTransformerBlock(
|
708 |
+
inner_dim,
|
709 |
+
num_attention_heads,
|
710 |
+
attention_head_dim,
|
711 |
+
cross_attention_dim=cross_attention_dim,
|
712 |
+
upcast_attention=upcast_attention,
|
713 |
+
)
|
714 |
+
)
|
715 |
+
|
716 |
+
self.transformer_blocks = nn.ModuleList(blocks)
|
717 |
+
|
718 |
+
if use_linear_projection:
|
719 |
+
self.proj_out = nn.Linear(in_channels, inner_dim)
|
720 |
+
else:
|
721 |
+
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
722 |
+
|
723 |
+
self.gradient_checkpointing = False
|
724 |
+
|
725 |
+
def set_use_memory_efficient_attention(self, xformers, mem_eff):
|
726 |
+
for transformer in self.transformer_blocks:
|
727 |
+
transformer.set_use_memory_efficient_attention(xformers, mem_eff)
|
728 |
+
|
729 |
+
def set_use_sdpa(self, sdpa):
|
730 |
+
for transformer in self.transformer_blocks:
|
731 |
+
transformer.set_use_sdpa(sdpa)
|
732 |
+
|
733 |
+
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None):
|
734 |
+
# 1. Input
|
735 |
+
batch, _, height, weight = hidden_states.shape
|
736 |
+
residual = hidden_states
|
737 |
+
|
738 |
+
hidden_states = self.norm(hidden_states)
|
739 |
+
if not self.use_linear_projection:
|
740 |
+
hidden_states = self.proj_in(hidden_states)
|
741 |
+
inner_dim = hidden_states.shape[1]
|
742 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
743 |
+
else:
|
744 |
+
inner_dim = hidden_states.shape[1]
|
745 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
746 |
+
hidden_states = self.proj_in(hidden_states)
|
747 |
+
|
748 |
+
# 2. Blocks
|
749 |
+
for block in self.transformer_blocks:
|
750 |
+
hidden_states = block(hidden_states, context=encoder_hidden_states, timestep=timestep)
|
751 |
+
|
752 |
+
# 3. Output
|
753 |
+
if not self.use_linear_projection:
|
754 |
+
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
755 |
+
hidden_states = self.proj_out(hidden_states)
|
756 |
+
else:
|
757 |
+
hidden_states = self.proj_out(hidden_states)
|
758 |
+
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
759 |
+
|
760 |
+
output = hidden_states + residual
|
761 |
+
|
762 |
+
return output
|
763 |
+
|
764 |
+
|
765 |
+
class Upsample2D(nn.Module):
|
766 |
+
def __init__(self, channels, out_channels):
|
767 |
+
super().__init__()
|
768 |
+
self.channels = channels
|
769 |
+
self.out_channels = out_channels
|
770 |
+
self.conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1)
|
771 |
+
|
772 |
+
self.gradient_checkpointing = False
|
773 |
+
|
774 |
+
def forward_body(self, hidden_states, output_size=None):
|
775 |
+
assert hidden_states.shape[1] == self.channels
|
776 |
+
|
777 |
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
778 |
+
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
|
779 |
+
# https://github.com/pytorch/pytorch/issues/86679
|
780 |
+
dtype = hidden_states.dtype
|
781 |
+
if dtype == torch.bfloat16:
|
782 |
+
hidden_states = hidden_states.to(torch.float32)
|
783 |
+
|
784 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
785 |
+
if hidden_states.shape[0] >= 64:
|
786 |
+
hidden_states = hidden_states.contiguous()
|
787 |
+
|
788 |
+
# if `output_size` is passed we force the interpolation output size and do not make use of `scale_factor=2`
|
789 |
+
if output_size is None:
|
790 |
+
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
|
791 |
+
else:
|
792 |
+
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
|
793 |
+
|
794 |
+
# If the input is bfloat16, we cast back to bfloat16
|
795 |
+
if dtype == torch.bfloat16:
|
796 |
+
hidden_states = hidden_states.to(dtype)
|
797 |
+
|
798 |
+
hidden_states = self.conv(hidden_states)
|
799 |
+
|
800 |
+
return hidden_states
|
801 |
+
|
802 |
+
def forward(self, hidden_states, output_size=None):
|
803 |
+
if self.training and self.gradient_checkpointing:
|
804 |
+
# logger.info("Upsample2D: gradient_checkpointing")
|
805 |
+
|
806 |
+
def create_custom_forward(func):
|
807 |
+
def custom_forward(*inputs):
|
808 |
+
return func(*inputs)
|
809 |
+
|
810 |
+
return custom_forward
|
811 |
+
|
812 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
813 |
+
create_custom_forward(self.forward_body), hidden_states, output_size, use_reentrant=USE_REENTRANT
|
814 |
+
)
|
815 |
+
else:
|
816 |
+
hidden_states = self.forward_body(hidden_states, output_size)
|
817 |
+
|
818 |
+
return hidden_states
|
819 |
+
|
820 |
+
|
821 |
+
class SdxlUNet2DConditionModel(nn.Module):
|
822 |
+
_supports_gradient_checkpointing = True
|
823 |
+
|
824 |
+
def __init__(
|
825 |
+
self,
|
826 |
+
**kwargs,
|
827 |
+
):
|
828 |
+
super().__init__()
|
829 |
+
|
830 |
+
self.in_channels = IN_CHANNELS
|
831 |
+
self.out_channels = OUT_CHANNELS
|
832 |
+
self.model_channels = MODEL_CHANNELS
|
833 |
+
self.time_embed_dim = TIME_EMBED_DIM
|
834 |
+
self.adm_in_channels = ADM_IN_CHANNELS
|
835 |
+
|
836 |
+
self.gradient_checkpointing = False
|
837 |
+
# self.sample_size = sample_size
|
838 |
+
|
839 |
+
# time embedding
|
840 |
+
self.time_embed = nn.Sequential(
|
841 |
+
nn.Linear(self.model_channels, self.time_embed_dim),
|
842 |
+
nn.SiLU(),
|
843 |
+
nn.Linear(self.time_embed_dim, self.time_embed_dim),
|
844 |
+
)
|
845 |
+
|
846 |
+
# label embedding
|
847 |
+
self.label_emb = nn.Sequential(
|
848 |
+
nn.Sequential(
|
849 |
+
nn.Linear(self.adm_in_channels, self.time_embed_dim),
|
850 |
+
nn.SiLU(),
|
851 |
+
nn.Linear(self.time_embed_dim, self.time_embed_dim),
|
852 |
+
)
|
853 |
+
)
|
854 |
+
|
855 |
+
# input
|
856 |
+
self.input_blocks = nn.ModuleList(
|
857 |
+
[
|
858 |
+
nn.Sequential(
|
859 |
+
nn.Conv2d(self.in_channels, self.model_channels, kernel_size=3, padding=(1, 1)),
|
860 |
+
)
|
861 |
+
]
|
862 |
+
)
|
863 |
+
|
864 |
+
# level 0
|
865 |
+
for i in range(2):
|
866 |
+
layers = [
|
867 |
+
ResnetBlock2D(
|
868 |
+
in_channels=1 * self.model_channels,
|
869 |
+
out_channels=1 * self.model_channels,
|
870 |
+
),
|
871 |
+
]
|
872 |
+
self.input_blocks.append(nn.ModuleList(layers))
|
873 |
+
|
874 |
+
self.input_blocks.append(
|
875 |
+
nn.Sequential(
|
876 |
+
Downsample2D(
|
877 |
+
channels=1 * self.model_channels,
|
878 |
+
out_channels=1 * self.model_channels,
|
879 |
+
),
|
880 |
+
)
|
881 |
+
)
|
882 |
+
|
883 |
+
# level 1
|
884 |
+
for i in range(2):
|
885 |
+
layers = [
|
886 |
+
ResnetBlock2D(
|
887 |
+
in_channels=(1 if i == 0 else 2) * self.model_channels,
|
888 |
+
out_channels=2 * self.model_channels,
|
889 |
+
),
|
890 |
+
Transformer2DModel(
|
891 |
+
num_attention_heads=2 * self.model_channels // 64,
|
892 |
+
attention_head_dim=64,
|
893 |
+
in_channels=2 * self.model_channels,
|
894 |
+
num_transformer_layers=2,
|
895 |
+
use_linear_projection=True,
|
896 |
+
cross_attention_dim=2048,
|
897 |
+
),
|
898 |
+
]
|
899 |
+
self.input_blocks.append(nn.ModuleList(layers))
|
900 |
+
|
901 |
+
self.input_blocks.append(
|
902 |
+
nn.Sequential(
|
903 |
+
Downsample2D(
|
904 |
+
channels=2 * self.model_channels,
|
905 |
+
out_channels=2 * self.model_channels,
|
906 |
+
),
|
907 |
+
)
|
908 |
+
)
|
909 |
+
|
910 |
+
# level 2
|
911 |
+
for i in range(2):
|
912 |
+
layers = [
|
913 |
+
ResnetBlock2D(
|
914 |
+
in_channels=(2 if i == 0 else 4) * self.model_channels,
|
915 |
+
out_channels=4 * self.model_channels,
|
916 |
+
),
|
917 |
+
Transformer2DModel(
|
918 |
+
num_attention_heads=4 * self.model_channels // 64,
|
919 |
+
attention_head_dim=64,
|
920 |
+
in_channels=4 * self.model_channels,
|
921 |
+
num_transformer_layers=10,
|
922 |
+
use_linear_projection=True,
|
923 |
+
cross_attention_dim=2048,
|
924 |
+
),
|
925 |
+
]
|
926 |
+
self.input_blocks.append(nn.ModuleList(layers))
|
927 |
+
|
928 |
+
# mid
|
929 |
+
self.middle_block = nn.ModuleList(
|
930 |
+
[
|
931 |
+
ResnetBlock2D(
|
932 |
+
in_channels=4 * self.model_channels,
|
933 |
+
out_channels=4 * self.model_channels,
|
934 |
+
),
|
935 |
+
Transformer2DModel(
|
936 |
+
num_attention_heads=4 * self.model_channels // 64,
|
937 |
+
attention_head_dim=64,
|
938 |
+
in_channels=4 * self.model_channels,
|
939 |
+
num_transformer_layers=10,
|
940 |
+
use_linear_projection=True,
|
941 |
+
cross_attention_dim=2048,
|
942 |
+
),
|
943 |
+
ResnetBlock2D(
|
944 |
+
in_channels=4 * self.model_channels,
|
945 |
+
out_channels=4 * self.model_channels,
|
946 |
+
),
|
947 |
+
]
|
948 |
+
)
|
949 |
+
|
950 |
+
# output
|
951 |
+
self.output_blocks = nn.ModuleList([])
|
952 |
+
|
953 |
+
# level 2
|
954 |
+
for i in range(3):
|
955 |
+
layers = [
|
956 |
+
ResnetBlock2D(
|
957 |
+
in_channels=4 * self.model_channels + (4 if i <= 1 else 2) * self.model_channels,
|
958 |
+
out_channels=4 * self.model_channels,
|
959 |
+
),
|
960 |
+
Transformer2DModel(
|
961 |
+
num_attention_heads=4 * self.model_channels // 64,
|
962 |
+
attention_head_dim=64,
|
963 |
+
in_channels=4 * self.model_channels,
|
964 |
+
num_transformer_layers=10,
|
965 |
+
use_linear_projection=True,
|
966 |
+
cross_attention_dim=2048,
|
967 |
+
),
|
968 |
+
]
|
969 |
+
if i == 2:
|
970 |
+
layers.append(
|
971 |
+
Upsample2D(
|
972 |
+
channels=4 * self.model_channels,
|
973 |
+
out_channels=4 * self.model_channels,
|
974 |
+
)
|
975 |
+
)
|
976 |
+
|
977 |
+
self.output_blocks.append(nn.ModuleList(layers))
|
978 |
+
|
979 |
+
# level 1
|
980 |
+
for i in range(3):
|
981 |
+
layers = [
|
982 |
+
ResnetBlock2D(
|
983 |
+
in_channels=2 * self.model_channels + (4 if i == 0 else (2 if i == 1 else 1)) * self.model_channels,
|
984 |
+
out_channels=2 * self.model_channels,
|
985 |
+
),
|
986 |
+
Transformer2DModel(
|
987 |
+
num_attention_heads=2 * self.model_channels // 64,
|
988 |
+
attention_head_dim=64,
|
989 |
+
in_channels=2 * self.model_channels,
|
990 |
+
num_transformer_layers=2,
|
991 |
+
use_linear_projection=True,
|
992 |
+
cross_attention_dim=2048,
|
993 |
+
),
|
994 |
+
]
|
995 |
+
if i == 2:
|
996 |
+
layers.append(
|
997 |
+
Upsample2D(
|
998 |
+
channels=2 * self.model_channels,
|
999 |
+
out_channels=2 * self.model_channels,
|
1000 |
+
)
|
1001 |
+
)
|
1002 |
+
|
1003 |
+
self.output_blocks.append(nn.ModuleList(layers))
|
1004 |
+
|
1005 |
+
# level 0
|
1006 |
+
for i in range(3):
|
1007 |
+
layers = [
|
1008 |
+
ResnetBlock2D(
|
1009 |
+
in_channels=1 * self.model_channels + (2 if i == 0 else 1) * self.model_channels,
|
1010 |
+
out_channels=1 * self.model_channels,
|
1011 |
+
),
|
1012 |
+
]
|
1013 |
+
|
1014 |
+
self.output_blocks.append(nn.ModuleList(layers))
|
1015 |
+
|
1016 |
+
# output
|
1017 |
+
self.out = nn.ModuleList(
|
1018 |
+
[GroupNorm32(32, self.model_channels), nn.SiLU(), nn.Conv2d(self.model_channels, self.out_channels, 3, padding=1)]
|
1019 |
+
)
|
1020 |
+
|
1021 |
+
# region diffusers compatibility
|
1022 |
+
def prepare_config(self):
|
1023 |
+
self.config = SimpleNamespace()
|
1024 |
+
|
1025 |
+
@property
|
1026 |
+
def dtype(self) -> torch.dtype:
|
1027 |
+
# `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
|
1028 |
+
return get_parameter_dtype(self)
|
1029 |
+
|
1030 |
+
@property
|
1031 |
+
def device(self) -> torch.device:
|
1032 |
+
# `torch.device`: The device on which the module is (assuming that all the module parameters are on the same device).
|
1033 |
+
return get_parameter_device(self)
|
1034 |
+
|
1035 |
+
def set_attention_slice(self, slice_size):
|
1036 |
+
raise NotImplementedError("Attention slicing is not supported for this model.")
|
1037 |
+
|
1038 |
+
def is_gradient_checkpointing(self) -> bool:
|
1039 |
+
return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())
|
1040 |
+
|
1041 |
+
def enable_gradient_checkpointing(self):
|
1042 |
+
self.gradient_checkpointing = True
|
1043 |
+
self.set_gradient_checkpointing(value=True)
|
1044 |
+
|
1045 |
+
def disable_gradient_checkpointing(self):
|
1046 |
+
self.gradient_checkpointing = False
|
1047 |
+
self.set_gradient_checkpointing(value=False)
|
1048 |
+
|
1049 |
+
def set_use_memory_efficient_attention(self, xformers: bool, mem_eff: bool) -> None:
|
1050 |
+
blocks = self.input_blocks + [self.middle_block] + self.output_blocks
|
1051 |
+
for block in blocks:
|
1052 |
+
for module in block:
|
1053 |
+
if hasattr(module, "set_use_memory_efficient_attention"):
|
1054 |
+
# logger.info(module.__class__.__name__)
|
1055 |
+
module.set_use_memory_efficient_attention(xformers, mem_eff)
|
1056 |
+
|
1057 |
+
def set_use_sdpa(self, sdpa: bool) -> None:
|
1058 |
+
blocks = self.input_blocks + [self.middle_block] + self.output_blocks
|
1059 |
+
for block in blocks:
|
1060 |
+
for module in block:
|
1061 |
+
if hasattr(module, "set_use_sdpa"):
|
1062 |
+
module.set_use_sdpa(sdpa)
|
1063 |
+
|
1064 |
+
def set_gradient_checkpointing(self, value=False):
|
1065 |
+
blocks = self.input_blocks + [self.middle_block] + self.output_blocks
|
1066 |
+
for block in blocks:
|
1067 |
+
for module in block.modules():
|
1068 |
+
if hasattr(module, "gradient_checkpointing"):
|
1069 |
+
# logger.info(f{module.__class__.__name__} {module.gradient_checkpointing} -> {value}")
|
1070 |
+
module.gradient_checkpointing = value
|
1071 |
+
|
1072 |
+
# endregion
|
1073 |
+
|
1074 |
+
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
|
1075 |
+
# broadcast timesteps to batch dimension
|
1076 |
+
timesteps = timesteps.expand(x.shape[0])
|
1077 |
+
|
1078 |
+
hs = []
|
1079 |
+
t_emb = get_timestep_embedding(timesteps, self.model_channels, downscale_freq_shift=0) # , repeat_only=False)
|
1080 |
+
t_emb = t_emb.to(x.dtype)
|
1081 |
+
emb = self.time_embed(t_emb)
|
1082 |
+
|
1083 |
+
assert x.shape[0] == y.shape[0], f"batch size mismatch: {x.shape[0]} != {y.shape[0]}"
|
1084 |
+
assert x.dtype == y.dtype, f"dtype mismatch: {x.dtype} != {y.dtype}"
|
1085 |
+
# assert x.dtype == self.dtype
|
1086 |
+
emb = emb + self.label_emb(y)
|
1087 |
+
|
1088 |
+
def call_module(module, h, emb, context):
|
1089 |
+
x = h
|
1090 |
+
for layer in module:
|
1091 |
+
# logger.info(layer.__class__.__name__, x.dtype, emb.dtype, context.dtype if context is not None else None)
|
1092 |
+
if isinstance(layer, ResnetBlock2D):
|
1093 |
+
x = layer(x, emb)
|
1094 |
+
elif isinstance(layer, Transformer2DModel):
|
1095 |
+
x = layer(x, context)
|
1096 |
+
else:
|
1097 |
+
x = layer(x)
|
1098 |
+
return x
|
1099 |
+
|
1100 |
+
# h = x.type(self.dtype)
|
1101 |
+
h = x
|
1102 |
+
|
1103 |
+
for module in self.input_blocks:
|
1104 |
+
h = call_module(module, h, emb, context)
|
1105 |
+
hs.append(h)
|
1106 |
+
|
1107 |
+
h = call_module(self.middle_block, h, emb, context)
|
1108 |
+
|
1109 |
+
for module in self.output_blocks:
|
1110 |
+
h = torch.cat([h, hs.pop()], dim=1)
|
1111 |
+
h = call_module(module, h, emb, context)
|
1112 |
+
|
1113 |
+
h = h.type(x.dtype)
|
1114 |
+
h = call_module(self.out, h, emb, context)
|
1115 |
+
|
1116 |
+
return h
|
1117 |
+
|
1118 |
+
|
1119 |
+
class InferSdxlUNet2DConditionModel:
|
1120 |
+
def __init__(self, original_unet: SdxlUNet2DConditionModel, **kwargs):
|
1121 |
+
self.delegate = original_unet
|
1122 |
+
|
1123 |
+
# override original model's forward method: because forward is not called by `__call__`
|
1124 |
+
# overriding `__call__` is not enough, because nn.Module.forward has a special handling
|
1125 |
+
self.delegate.forward = self.forward
|
1126 |
+
|
1127 |
+
# Deep Shrink
|
1128 |
+
self.ds_depth_1 = None
|
1129 |
+
self.ds_depth_2 = None
|
1130 |
+
self.ds_timesteps_1 = None
|
1131 |
+
self.ds_timesteps_2 = None
|
1132 |
+
self.ds_ratio = None
|
1133 |
+
|
1134 |
+
# call original model's methods
|
1135 |
+
def __getattr__(self, name):
|
1136 |
+
return getattr(self.delegate, name)
|
1137 |
+
|
1138 |
+
def __call__(self, *args, **kwargs):
|
1139 |
+
return self.delegate(*args, **kwargs)
|
1140 |
+
|
1141 |
+
def set_deep_shrink(self, ds_depth_1, ds_timesteps_1=650, ds_depth_2=None, ds_timesteps_2=None, ds_ratio=0.5):
|
1142 |
+
if ds_depth_1 is None:
|
1143 |
+
logger.info("Deep Shrink is disabled.")
|
1144 |
+
self.ds_depth_1 = None
|
1145 |
+
self.ds_timesteps_1 = None
|
1146 |
+
self.ds_depth_2 = None
|
1147 |
+
self.ds_timesteps_2 = None
|
1148 |
+
self.ds_ratio = None
|
1149 |
+
else:
|
1150 |
+
logger.info(
|
1151 |
+
f"Deep Shrink is enabled: [depth={ds_depth_1}/{ds_depth_2}, timesteps={ds_timesteps_1}/{ds_timesteps_2}, ratio={ds_ratio}]"
|
1152 |
+
)
|
1153 |
+
self.ds_depth_1 = ds_depth_1
|
1154 |
+
self.ds_timesteps_1 = ds_timesteps_1
|
1155 |
+
self.ds_depth_2 = ds_depth_2 if ds_depth_2 is not None else -1
|
1156 |
+
self.ds_timesteps_2 = ds_timesteps_2 if ds_timesteps_2 is not None else 1000
|
1157 |
+
self.ds_ratio = ds_ratio
|
1158 |
+
|
1159 |
+
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
|
1160 |
+
r"""
|
1161 |
+
current implementation is a copy of `SdxlUNet2DConditionModel.forward()` with Deep Shrink.
|
1162 |
+
"""
|
1163 |
+
_self = self.delegate
|
1164 |
+
|
1165 |
+
# broadcast timesteps to batch dimension
|
1166 |
+
timesteps = timesteps.expand(x.shape[0])
|
1167 |
+
|
1168 |
+
hs = []
|
1169 |
+
t_emb = get_timestep_embedding(timesteps, _self.model_channels, downscale_freq_shift=0) # , repeat_only=False)
|
1170 |
+
t_emb = t_emb.to(x.dtype)
|
1171 |
+
emb = _self.time_embed(t_emb)
|
1172 |
+
|
1173 |
+
assert x.shape[0] == y.shape[0], f"batch size mismatch: {x.shape[0]} != {y.shape[0]}"
|
1174 |
+
assert x.dtype == y.dtype, f"dtype mismatch: {x.dtype} != {y.dtype}"
|
1175 |
+
# assert x.dtype == _self.dtype
|
1176 |
+
emb = emb + _self.label_emb(y)
|
1177 |
+
|
1178 |
+
def call_module(module, h, emb, context):
|
1179 |
+
x = h
|
1180 |
+
for layer in module:
|
1181 |
+
# print(layer.__class__.__name__, x.dtype, emb.dtype, context.dtype if context is not None else None)
|
1182 |
+
if isinstance(layer, ResnetBlock2D):
|
1183 |
+
x = layer(x, emb)
|
1184 |
+
elif isinstance(layer, Transformer2DModel):
|
1185 |
+
x = layer(x, context)
|
1186 |
+
else:
|
1187 |
+
x = layer(x)
|
1188 |
+
return x
|
1189 |
+
|
1190 |
+
# h = x.type(self.dtype)
|
1191 |
+
h = x
|
1192 |
+
|
1193 |
+
for depth, module in enumerate(_self.input_blocks):
|
1194 |
+
# Deep Shrink
|
1195 |
+
if self.ds_depth_1 is not None:
|
1196 |
+
if (depth == self.ds_depth_1 and timesteps[0] >= self.ds_timesteps_1) or (
|
1197 |
+
self.ds_depth_2 is not None
|
1198 |
+
and depth == self.ds_depth_2
|
1199 |
+
and timesteps[0] < self.ds_timesteps_1
|
1200 |
+
and timesteps[0] >= self.ds_timesteps_2
|
1201 |
+
):
|
1202 |
+
# print("downsample", h.shape, self.ds_ratio)
|
1203 |
+
org_dtype = h.dtype
|
1204 |
+
if org_dtype == torch.bfloat16:
|
1205 |
+
h = h.to(torch.float32)
|
1206 |
+
h = F.interpolate(h, scale_factor=self.ds_ratio, mode="bicubic", align_corners=False).to(org_dtype)
|
1207 |
+
|
1208 |
+
h = call_module(module, h, emb, context)
|
1209 |
+
hs.append(h)
|
1210 |
+
|
1211 |
+
h = call_module(_self.middle_block, h, emb, context)
|
1212 |
+
|
1213 |
+
for module in _self.output_blocks:
|
1214 |
+
# Deep Shrink
|
1215 |
+
if self.ds_depth_1 is not None:
|
1216 |
+
if hs[-1].shape[-2:] != h.shape[-2:]:
|
1217 |
+
# print("upsample", h.shape, hs[-1].shape)
|
1218 |
+
h = resize_like(h, hs[-1])
|
1219 |
+
|
1220 |
+
h = torch.cat([h, hs.pop()], dim=1)
|
1221 |
+
h = call_module(module, h, emb, context)
|
1222 |
+
|
1223 |
+
# Deep Shrink: in case of depth 0
|
1224 |
+
if self.ds_depth_1 == 0 and h.shape[-2:] != x.shape[-2:]:
|
1225 |
+
# print("upsample", h.shape, x.shape)
|
1226 |
+
h = resize_like(h, x)
|
1227 |
+
|
1228 |
+
h = h.type(x.dtype)
|
1229 |
+
h = call_module(_self.out, h, emb, context)
|
1230 |
+
|
1231 |
+
return h
|
1232 |
+
|
1233 |
+
|
1234 |
+
if __name__ == "__main__":
|
1235 |
+
import time
|
1236 |
+
|
1237 |
+
logger.info("create unet")
|
1238 |
+
unet = SdxlUNet2DConditionModel()
|
1239 |
+
|
1240 |
+
unet.to("cuda")
|
1241 |
+
unet.set_use_memory_efficient_attention(True, False)
|
1242 |
+
unet.set_gradient_checkpointing(True)
|
1243 |
+
unet.train()
|
1244 |
+
|
1245 |
+
# 使用メモリ量確認用の疑似学習ループ
|
1246 |
+
logger.info("preparing optimizer")
|
1247 |
+
|
1248 |
+
# optimizer = torch.optim.SGD(unet.parameters(), lr=1e-3, nesterov=True, momentum=0.9) # not working
|
1249 |
+
|
1250 |
+
# import bitsandbytes
|
1251 |
+
# optimizer = bitsandbytes.adam.Adam8bit(unet.parameters(), lr=1e-3) # not working
|
1252 |
+
# optimizer = bitsandbytes.optim.RMSprop8bit(unet.parameters(), lr=1e-3) # working at 23.5 GB with torch2
|
1253 |
+
# optimizer=bitsandbytes.optim.Adagrad8bit(unet.parameters(), lr=1e-3) # working at 23.5 GB with torch2
|
1254 |
+
|
1255 |
+
import transformers
|
1256 |
+
|
1257 |
+
optimizer = transformers.optimization.Adafactor(unet.parameters(), relative_step=True) # working at 22.2GB with torch2
|
1258 |
+
|
1259 |
+
scaler = torch.cuda.amp.GradScaler(enabled=True)
|
1260 |
+
|
1261 |
+
logger.info("start training")
|
1262 |
+
steps = 10
|
1263 |
+
batch_size = 1
|
1264 |
+
|
1265 |
+
for step in range(steps):
|
1266 |
+
logger.info(f"step {step}")
|
1267 |
+
if step == 1:
|
1268 |
+
time_start = time.perf_counter()
|
1269 |
+
|
1270 |
+
x = torch.randn(batch_size, 4, 128, 128).cuda() # 1024x1024
|
1271 |
+
t = torch.randint(low=0, high=10, size=(batch_size,), device="cuda")
|
1272 |
+
ctx = torch.randn(batch_size, 77, 2048).cuda()
|
1273 |
+
y = torch.randn(batch_size, ADM_IN_CHANNELS).cuda()
|
1274 |
+
|
1275 |
+
with torch.cuda.amp.autocast(enabled=True):
|
1276 |
+
output = unet(x, t, ctx, y)
|
1277 |
+
target = torch.randn_like(output)
|
1278 |
+
loss = torch.nn.functional.mse_loss(output, target)
|
1279 |
+
|
1280 |
+
scaler.scale(loss).backward()
|
1281 |
+
scaler.step(optimizer)
|
1282 |
+
scaler.update()
|
1283 |
+
optimizer.zero_grad(set_to_none=True)
|
1284 |
+
|
1285 |
+
time_end = time.perf_counter()
|
1286 |
+
logger.info(f"elapsed time: {time_end - time_start} [sec] for last {steps - 1} steps")
|