ACCC1380 commited on
Commit
c627372
1 Parent(s): e08d418

Upload lora-scripts/sd-scripts/finetune/hypernetwork_nai.py with huggingface_hub

Browse files
lora-scripts/sd-scripts/finetune/hypernetwork_nai.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # NAI compatible
2
+
3
+ import torch
4
+
5
+
6
+ class HypernetworkModule(torch.nn.Module):
7
+ def __init__(self, dim, multiplier=1.0):
8
+ super().__init__()
9
+
10
+ linear1 = torch.nn.Linear(dim, dim * 2)
11
+ linear2 = torch.nn.Linear(dim * 2, dim)
12
+ linear1.weight.data.normal_(mean=0.0, std=0.01)
13
+ linear1.bias.data.zero_()
14
+ linear2.weight.data.normal_(mean=0.0, std=0.01)
15
+ linear2.bias.data.zero_()
16
+ linears = [linear1, linear2]
17
+
18
+ self.linear = torch.nn.Sequential(*linears)
19
+ self.multiplier = multiplier
20
+
21
+ def forward(self, x):
22
+ return x + self.linear(x) * self.multiplier
23
+
24
+
25
+ class Hypernetwork(torch.nn.Module):
26
+ enable_sizes = [320, 640, 768, 1280]
27
+ # return self.modules[Hypernetwork.enable_sizes.index(size)]
28
+
29
+ def __init__(self, multiplier=1.0) -> None:
30
+ super().__init__()
31
+ self.modules = []
32
+ for size in Hypernetwork.enable_sizes:
33
+ self.modules.append((HypernetworkModule(size, multiplier), HypernetworkModule(size, multiplier)))
34
+ self.register_module(f"{size}_0", self.modules[-1][0])
35
+ self.register_module(f"{size}_1", self.modules[-1][1])
36
+
37
+ def apply_to_stable_diffusion(self, text_encoder, vae, unet):
38
+ blocks = unet.input_blocks + [unet.middle_block] + unet.output_blocks
39
+ for block in blocks:
40
+ for subblk in block:
41
+ if 'SpatialTransformer' in str(type(subblk)):
42
+ for tf_block in subblk.transformer_blocks:
43
+ for attn in [tf_block.attn1, tf_block.attn2]:
44
+ size = attn.context_dim
45
+ if size in Hypernetwork.enable_sizes:
46
+ attn.hypernetwork = self
47
+ else:
48
+ attn.hypernetwork = None
49
+
50
+ def apply_to_diffusers(self, text_encoder, vae, unet):
51
+ blocks = unet.down_blocks + [unet.mid_block] + unet.up_blocks
52
+ for block in blocks:
53
+ if hasattr(block, 'attentions'):
54
+ for subblk in block.attentions:
55
+ if 'SpatialTransformer' in str(type(subblk)) or 'Transformer2DModel' in str(type(subblk)): # 0.6.0 and 0.7~
56
+ for tf_block in subblk.transformer_blocks:
57
+ for attn in [tf_block.attn1, tf_block.attn2]:
58
+ size = attn.to_k.in_features
59
+ if size in Hypernetwork.enable_sizes:
60
+ attn.hypernetwork = self
61
+ else:
62
+ attn.hypernetwork = None
63
+ return True # TODO error checking
64
+
65
+ def forward(self, x, context):
66
+ size = context.shape[-1]
67
+ assert size in Hypernetwork.enable_sizes
68
+ module = self.modules[Hypernetwork.enable_sizes.index(size)]
69
+ return module[0].forward(context), module[1].forward(context)
70
+
71
+ def load_from_state_dict(self, state_dict):
72
+ # old ver to new ver
73
+ changes = {
74
+ 'linear1.bias': 'linear.0.bias',
75
+ 'linear1.weight': 'linear.0.weight',
76
+ 'linear2.bias': 'linear.1.bias',
77
+ 'linear2.weight': 'linear.1.weight',
78
+ }
79
+ for key_from, key_to in changes.items():
80
+ if key_from in state_dict:
81
+ state_dict[key_to] = state_dict[key_from]
82
+ del state_dict[key_from]
83
+
84
+ for size, sd in state_dict.items():
85
+ if type(size) == int:
86
+ self.modules[Hypernetwork.enable_sizes.index(size)][0].load_state_dict(sd[0], strict=True)
87
+ self.modules[Hypernetwork.enable_sizes.index(size)][1].load_state_dict(sd[1], strict=True)
88
+ return True
89
+
90
+ def get_state_dict(self):
91
+ state_dict = {}
92
+ for i, size in enumerate(Hypernetwork.enable_sizes):
93
+ sd0 = self.modules[i][0].state_dict()
94
+ sd1 = self.modules[i][1].state_dict()
95
+ state_dict[size] = [sd0, sd1]
96
+ return state_dict