Upload lora-scripts/sd-scripts/library/hypernetwork.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/library/hypernetwork.py
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from diffusers.models.attention_processor import (
|
4 |
+
Attention,
|
5 |
+
AttnProcessor2_0,
|
6 |
+
SlicedAttnProcessor,
|
7 |
+
XFormersAttnProcessor
|
8 |
+
)
|
9 |
+
|
10 |
+
try:
|
11 |
+
import xformers.ops
|
12 |
+
except:
|
13 |
+
xformers = None
|
14 |
+
|
15 |
+
|
16 |
+
loaded_networks = []
|
17 |
+
|
18 |
+
|
19 |
+
def apply_single_hypernetwork(
|
20 |
+
hypernetwork, hidden_states, encoder_hidden_states
|
21 |
+
):
|
22 |
+
context_k, context_v = hypernetwork.forward(hidden_states, encoder_hidden_states)
|
23 |
+
return context_k, context_v
|
24 |
+
|
25 |
+
|
26 |
+
def apply_hypernetworks(context_k, context_v, layer=None):
|
27 |
+
if len(loaded_networks) == 0:
|
28 |
+
return context_v, context_v
|
29 |
+
for hypernetwork in loaded_networks:
|
30 |
+
context_k, context_v = hypernetwork.forward(context_k, context_v)
|
31 |
+
|
32 |
+
context_k = context_k.to(dtype=context_k.dtype)
|
33 |
+
context_v = context_v.to(dtype=context_k.dtype)
|
34 |
+
|
35 |
+
return context_k, context_v
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
def xformers_forward(
|
40 |
+
self: XFormersAttnProcessor,
|
41 |
+
attn: Attention,
|
42 |
+
hidden_states: torch.Tensor,
|
43 |
+
encoder_hidden_states: torch.Tensor = None,
|
44 |
+
attention_mask: torch.Tensor = None,
|
45 |
+
):
|
46 |
+
batch_size, sequence_length, _ = (
|
47 |
+
hidden_states.shape
|
48 |
+
if encoder_hidden_states is None
|
49 |
+
else encoder_hidden_states.shape
|
50 |
+
)
|
51 |
+
|
52 |
+
attention_mask = attn.prepare_attention_mask(
|
53 |
+
attention_mask, sequence_length, batch_size
|
54 |
+
)
|
55 |
+
|
56 |
+
query = attn.to_q(hidden_states)
|
57 |
+
|
58 |
+
if encoder_hidden_states is None:
|
59 |
+
encoder_hidden_states = hidden_states
|
60 |
+
elif attn.norm_cross:
|
61 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
62 |
+
|
63 |
+
context_k, context_v = apply_hypernetworks(hidden_states, encoder_hidden_states)
|
64 |
+
|
65 |
+
key = attn.to_k(context_k)
|
66 |
+
value = attn.to_v(context_v)
|
67 |
+
|
68 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
69 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
70 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
71 |
+
|
72 |
+
hidden_states = xformers.ops.memory_efficient_attention(
|
73 |
+
query,
|
74 |
+
key,
|
75 |
+
value,
|
76 |
+
attn_bias=attention_mask,
|
77 |
+
op=self.attention_op,
|
78 |
+
scale=attn.scale,
|
79 |
+
)
|
80 |
+
hidden_states = hidden_states.to(query.dtype)
|
81 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
82 |
+
|
83 |
+
# linear proj
|
84 |
+
hidden_states = attn.to_out[0](hidden_states)
|
85 |
+
# dropout
|
86 |
+
hidden_states = attn.to_out[1](hidden_states)
|
87 |
+
return hidden_states
|
88 |
+
|
89 |
+
|
90 |
+
def sliced_attn_forward(
|
91 |
+
self: SlicedAttnProcessor,
|
92 |
+
attn: Attention,
|
93 |
+
hidden_states: torch.Tensor,
|
94 |
+
encoder_hidden_states: torch.Tensor = None,
|
95 |
+
attention_mask: torch.Tensor = None,
|
96 |
+
):
|
97 |
+
batch_size, sequence_length, _ = (
|
98 |
+
hidden_states.shape
|
99 |
+
if encoder_hidden_states is None
|
100 |
+
else encoder_hidden_states.shape
|
101 |
+
)
|
102 |
+
attention_mask = attn.prepare_attention_mask(
|
103 |
+
attention_mask, sequence_length, batch_size
|
104 |
+
)
|
105 |
+
|
106 |
+
query = attn.to_q(hidden_states)
|
107 |
+
dim = query.shape[-1]
|
108 |
+
query = attn.head_to_batch_dim(query)
|
109 |
+
|
110 |
+
if encoder_hidden_states is None:
|
111 |
+
encoder_hidden_states = hidden_states
|
112 |
+
elif attn.norm_cross:
|
113 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
114 |
+
|
115 |
+
context_k, context_v = apply_hypernetworks(hidden_states, encoder_hidden_states)
|
116 |
+
|
117 |
+
key = attn.to_k(context_k)
|
118 |
+
value = attn.to_v(context_v)
|
119 |
+
key = attn.head_to_batch_dim(key)
|
120 |
+
value = attn.head_to_batch_dim(value)
|
121 |
+
|
122 |
+
batch_size_attention, query_tokens, _ = query.shape
|
123 |
+
hidden_states = torch.zeros(
|
124 |
+
(batch_size_attention, query_tokens, dim // attn.heads),
|
125 |
+
device=query.device,
|
126 |
+
dtype=query.dtype,
|
127 |
+
)
|
128 |
+
|
129 |
+
for i in range(batch_size_attention // self.slice_size):
|
130 |
+
start_idx = i * self.slice_size
|
131 |
+
end_idx = (i + 1) * self.slice_size
|
132 |
+
|
133 |
+
query_slice = query[start_idx:end_idx]
|
134 |
+
key_slice = key[start_idx:end_idx]
|
135 |
+
attn_mask_slice = (
|
136 |
+
attention_mask[start_idx:end_idx] if attention_mask is not None else None
|
137 |
+
)
|
138 |
+
|
139 |
+
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
|
140 |
+
|
141 |
+
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
|
142 |
+
|
143 |
+
hidden_states[start_idx:end_idx] = attn_slice
|
144 |
+
|
145 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
146 |
+
|
147 |
+
# linear proj
|
148 |
+
hidden_states = attn.to_out[0](hidden_states)
|
149 |
+
# dropout
|
150 |
+
hidden_states = attn.to_out[1](hidden_states)
|
151 |
+
|
152 |
+
return hidden_states
|
153 |
+
|
154 |
+
|
155 |
+
def v2_0_forward(
|
156 |
+
self: AttnProcessor2_0,
|
157 |
+
attn: Attention,
|
158 |
+
hidden_states,
|
159 |
+
encoder_hidden_states=None,
|
160 |
+
attention_mask=None,
|
161 |
+
):
|
162 |
+
batch_size, sequence_length, _ = (
|
163 |
+
hidden_states.shape
|
164 |
+
if encoder_hidden_states is None
|
165 |
+
else encoder_hidden_states.shape
|
166 |
+
)
|
167 |
+
inner_dim = hidden_states.shape[-1]
|
168 |
+
|
169 |
+
if attention_mask is not None:
|
170 |
+
attention_mask = attn.prepare_attention_mask(
|
171 |
+
attention_mask, sequence_length, batch_size
|
172 |
+
)
|
173 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
174 |
+
# (batch, heads, source_length, target_length)
|
175 |
+
attention_mask = attention_mask.view(
|
176 |
+
batch_size, attn.heads, -1, attention_mask.shape[-1]
|
177 |
+
)
|
178 |
+
|
179 |
+
query = attn.to_q(hidden_states)
|
180 |
+
|
181 |
+
if encoder_hidden_states is None:
|
182 |
+
encoder_hidden_states = hidden_states
|
183 |
+
elif attn.norm_cross:
|
184 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
185 |
+
|
186 |
+
context_k, context_v = apply_hypernetworks(hidden_states, encoder_hidden_states)
|
187 |
+
|
188 |
+
key = attn.to_k(context_k)
|
189 |
+
value = attn.to_v(context_v)
|
190 |
+
|
191 |
+
head_dim = inner_dim // attn.heads
|
192 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
193 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
194 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
195 |
+
|
196 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
197 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
198 |
+
hidden_states = F.scaled_dot_product_attention(
|
199 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
200 |
+
)
|
201 |
+
|
202 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
203 |
+
batch_size, -1, attn.heads * head_dim
|
204 |
+
)
|
205 |
+
hidden_states = hidden_states.to(query.dtype)
|
206 |
+
|
207 |
+
# linear proj
|
208 |
+
hidden_states = attn.to_out[0](hidden_states)
|
209 |
+
# dropout
|
210 |
+
hidden_states = attn.to_out[1](hidden_states)
|
211 |
+
return hidden_states
|
212 |
+
|
213 |
+
|
214 |
+
def replace_attentions_for_hypernetwork():
|
215 |
+
import diffusers.models.attention_processor
|
216 |
+
|
217 |
+
diffusers.models.attention_processor.XFormersAttnProcessor.__call__ = (
|
218 |
+
xformers_forward
|
219 |
+
)
|
220 |
+
diffusers.models.attention_processor.SlicedAttnProcessor.__call__ = (
|
221 |
+
sliced_attn_forward
|
222 |
+
)
|
223 |
+
diffusers.models.attention_processor.AttnProcessor2_0.__call__ = v2_0_forward
|