Upload lora-scripts/sd-scripts/finetune/prepare_buckets_latents.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/finetune/prepare_buckets_latents.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import List
|
7 |
+
from tqdm import tqdm
|
8 |
+
import numpy as np
|
9 |
+
from PIL import Image
|
10 |
+
import cv2
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from library.device_utils import init_ipex, get_preferred_device
|
14 |
+
init_ipex()
|
15 |
+
|
16 |
+
from torchvision import transforms
|
17 |
+
|
18 |
+
import library.model_util as model_util
|
19 |
+
import library.train_util as train_util
|
20 |
+
from library.utils import setup_logging
|
21 |
+
setup_logging()
|
22 |
+
import logging
|
23 |
+
logger = logging.getLogger(__name__)
|
24 |
+
|
25 |
+
DEVICE = get_preferred_device()
|
26 |
+
|
27 |
+
IMAGE_TRANSFORMS = transforms.Compose(
|
28 |
+
[
|
29 |
+
transforms.ToTensor(),
|
30 |
+
transforms.Normalize([0.5], [0.5]),
|
31 |
+
]
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
def collate_fn_remove_corrupted(batch):
|
36 |
+
"""Collate function that allows to remove corrupted examples in the
|
37 |
+
dataloader. It expects that the dataloader returns 'None' when that occurs.
|
38 |
+
The 'None's in the batch are removed.
|
39 |
+
"""
|
40 |
+
# Filter out all the Nones (corrupted examples)
|
41 |
+
batch = list(filter(lambda x: x is not None, batch))
|
42 |
+
return batch
|
43 |
+
|
44 |
+
|
45 |
+
def get_npz_filename(data_dir, image_key, is_full_path, recursive):
|
46 |
+
if is_full_path:
|
47 |
+
base_name = os.path.splitext(os.path.basename(image_key))[0]
|
48 |
+
relative_path = os.path.relpath(os.path.dirname(image_key), data_dir)
|
49 |
+
else:
|
50 |
+
base_name = image_key
|
51 |
+
relative_path = ""
|
52 |
+
|
53 |
+
if recursive and relative_path:
|
54 |
+
return os.path.join(data_dir, relative_path, base_name) + ".npz"
|
55 |
+
else:
|
56 |
+
return os.path.join(data_dir, base_name) + ".npz"
|
57 |
+
|
58 |
+
|
59 |
+
def main(args):
|
60 |
+
# assert args.bucket_reso_steps % 8 == 0, f"bucket_reso_steps must be divisible by 8 / bucket_reso_stepは8で割り切れる必要があります"
|
61 |
+
if args.bucket_reso_steps % 8 > 0:
|
62 |
+
logger.warning(f"resolution of buckets in training time is a multiple of 8 / 学習時の各bucketの解像度は8単位になります")
|
63 |
+
if args.bucket_reso_steps % 32 > 0:
|
64 |
+
logger.warning(
|
65 |
+
f"WARNING: bucket_reso_steps is not divisible by 32. It is not working with SDXL / bucket_reso_stepsが32で割り切れません。SDXLでは動作しません"
|
66 |
+
)
|
67 |
+
|
68 |
+
train_data_dir_path = Path(args.train_data_dir)
|
69 |
+
image_paths: List[str] = [str(p) for p in train_util.glob_images_pathlib(train_data_dir_path, args.recursive)]
|
70 |
+
logger.info(f"found {len(image_paths)} images.")
|
71 |
+
|
72 |
+
if os.path.exists(args.in_json):
|
73 |
+
logger.info(f"loading existing metadata: {args.in_json}")
|
74 |
+
with open(args.in_json, "rt", encoding="utf-8") as f:
|
75 |
+
metadata = json.load(f)
|
76 |
+
else:
|
77 |
+
logger.error(f"no metadata / メタデータファイルがありません: {args.in_json}")
|
78 |
+
return
|
79 |
+
|
80 |
+
weight_dtype = torch.float32
|
81 |
+
if args.mixed_precision == "fp16":
|
82 |
+
weight_dtype = torch.float16
|
83 |
+
elif args.mixed_precision == "bf16":
|
84 |
+
weight_dtype = torch.bfloat16
|
85 |
+
|
86 |
+
vae = model_util.load_vae(args.model_name_or_path, weight_dtype)
|
87 |
+
vae.eval()
|
88 |
+
vae.to(DEVICE, dtype=weight_dtype)
|
89 |
+
|
90 |
+
# bucketのサイズを計算する
|
91 |
+
max_reso = tuple([int(t) for t in args.max_resolution.split(",")])
|
92 |
+
assert len(max_reso) == 2, f"illegal resolution (not 'width,height') / 画像サイズに誤りがあります。'幅,高さ'で指定してください: {args.max_resolution}"
|
93 |
+
|
94 |
+
bucket_manager = train_util.BucketManager(
|
95 |
+
args.bucket_no_upscale, max_reso, args.min_bucket_reso, args.max_bucket_reso, args.bucket_reso_steps
|
96 |
+
)
|
97 |
+
if not args.bucket_no_upscale:
|
98 |
+
bucket_manager.make_buckets()
|
99 |
+
else:
|
100 |
+
logger.warning(
|
101 |
+
"min_bucket_reso and max_bucket_reso are ignored if bucket_no_upscale is set, because bucket reso is defined by image size automatically / bucket_no_upscaleが指定された場合は、bucketの解像度は画像サイズから自動計算されるため、min_bucket_resoとmax_bucket_resoは無視されます"
|
102 |
+
)
|
103 |
+
|
104 |
+
# 画像をひとつずつ適切なbucketに割り当てながらlatentを計算する
|
105 |
+
img_ar_errors = []
|
106 |
+
|
107 |
+
def process_batch(is_last):
|
108 |
+
for bucket in bucket_manager.buckets:
|
109 |
+
if (is_last and len(bucket) > 0) or len(bucket) >= args.batch_size:
|
110 |
+
train_util.cache_batch_latents(vae, True, bucket, args.flip_aug, False)
|
111 |
+
bucket.clear()
|
112 |
+
|
113 |
+
# 読み込みの高速化のためにDataLoaderを使うオプション
|
114 |
+
if args.max_data_loader_n_workers is not None:
|
115 |
+
dataset = train_util.ImageLoadingDataset(image_paths)
|
116 |
+
data = torch.utils.data.DataLoader(
|
117 |
+
dataset,
|
118 |
+
batch_size=1,
|
119 |
+
shuffle=False,
|
120 |
+
num_workers=args.max_data_loader_n_workers,
|
121 |
+
collate_fn=collate_fn_remove_corrupted,
|
122 |
+
drop_last=False,
|
123 |
+
)
|
124 |
+
else:
|
125 |
+
data = [[(None, ip)] for ip in image_paths]
|
126 |
+
|
127 |
+
bucket_counts = {}
|
128 |
+
for data_entry in tqdm(data, smoothing=0.0):
|
129 |
+
if data_entry[0] is None:
|
130 |
+
continue
|
131 |
+
|
132 |
+
img_tensor, image_path = data_entry[0]
|
133 |
+
if img_tensor is not None:
|
134 |
+
image = transforms.functional.to_pil_image(img_tensor)
|
135 |
+
else:
|
136 |
+
try:
|
137 |
+
image = Image.open(image_path)
|
138 |
+
if image.mode != "RGB":
|
139 |
+
image = image.convert("RGB")
|
140 |
+
except Exception as e:
|
141 |
+
logger.error(f"Could not load image path / 画像を読み込めません: {image_path}, error: {e}")
|
142 |
+
continue
|
143 |
+
|
144 |
+
image_key = image_path if args.full_path else os.path.splitext(os.path.basename(image_path))[0]
|
145 |
+
if image_key not in metadata:
|
146 |
+
metadata[image_key] = {}
|
147 |
+
|
148 |
+
# 本当はこのあとの部分もDataSetに持っていけば高速化できるがいろいろ大変
|
149 |
+
|
150 |
+
reso, resized_size, ar_error = bucket_manager.select_bucket(image.width, image.height)
|
151 |
+
img_ar_errors.append(abs(ar_error))
|
152 |
+
bucket_counts[reso] = bucket_counts.get(reso, 0) + 1
|
153 |
+
|
154 |
+
# メタデータに記録する解像度はlatent単位とするので、8単位で切り捨て
|
155 |
+
metadata[image_key]["train_resolution"] = (reso[0] - reso[0] % 8, reso[1] - reso[1] % 8)
|
156 |
+
|
157 |
+
if not args.bucket_no_upscale:
|
158 |
+
# upscaleを行わないときには、resize後のサイズは、bucketのサイズと、縦横どちらかが同じであることを確認する
|
159 |
+
assert (
|
160 |
+
resized_size[0] == reso[0] or resized_size[1] == reso[1]
|
161 |
+
), f"internal error, resized size not match: {reso}, {resized_size}, {image.width}, {image.height}"
|
162 |
+
assert (
|
163 |
+
resized_size[0] >= reso[0] and resized_size[1] >= reso[1]
|
164 |
+
), f"internal error, resized size too small: {reso}, {resized_size}, {image.width}, {image.height}"
|
165 |
+
|
166 |
+
assert (
|
167 |
+
resized_size[0] >= reso[0] and resized_size[1] >= reso[1]
|
168 |
+
), f"internal error resized size is small: {resized_size}, {reso}"
|
169 |
+
|
170 |
+
# 既に存在するファイルがあればshape等を確認して同じならskipする
|
171 |
+
npz_file_name = get_npz_filename(args.train_data_dir, image_key, args.full_path, args.recursive)
|
172 |
+
if args.skip_existing:
|
173 |
+
if train_util.is_disk_cached_latents_is_expected(reso, npz_file_name, args.flip_aug):
|
174 |
+
continue
|
175 |
+
|
176 |
+
# バッチへ追加
|
177 |
+
image_info = train_util.ImageInfo(image_key, 1, "", False, image_path)
|
178 |
+
image_info.latents_npz = npz_file_name
|
179 |
+
image_info.bucket_reso = reso
|
180 |
+
image_info.resized_size = resized_size
|
181 |
+
image_info.image = image
|
182 |
+
bucket_manager.add_image(reso, image_info)
|
183 |
+
|
184 |
+
# バッチを推論するか判定して推論する
|
185 |
+
process_batch(False)
|
186 |
+
|
187 |
+
# 残りを処理する
|
188 |
+
process_batch(True)
|
189 |
+
|
190 |
+
bucket_manager.sort()
|
191 |
+
for i, reso in enumerate(bucket_manager.resos):
|
192 |
+
count = bucket_counts.get(reso, 0)
|
193 |
+
if count > 0:
|
194 |
+
logger.info(f"bucket {i} {reso}: {count}")
|
195 |
+
img_ar_errors = np.array(img_ar_errors)
|
196 |
+
logger.info(f"mean ar error: {np.mean(img_ar_errors)}")
|
197 |
+
|
198 |
+
# metadataを書き出して終わり
|
199 |
+
logger.info(f"writing metadata: {args.out_json}")
|
200 |
+
with open(args.out_json, "wt", encoding="utf-8") as f:
|
201 |
+
json.dump(metadata, f, indent=2)
|
202 |
+
logger.info("done!")
|
203 |
+
|
204 |
+
|
205 |
+
def setup_parser() -> argparse.ArgumentParser:
|
206 |
+
parser = argparse.ArgumentParser()
|
207 |
+
parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ")
|
208 |
+
parser.add_argument("in_json", type=str, help="metadata file to input / 読み込むメタデータファイル")
|
209 |
+
parser.add_argument("out_json", type=str, help="metadata file to output / メタデータファイル書き出し先")
|
210 |
+
parser.add_argument("model_name_or_path", type=str, help="model name or path to encode latents / latentを取得するためのモデル")
|
211 |
+
parser.add_argument("--v2", action="store_true", help="not used (for backward compatibility) / 使用されません(互換性のため残してあります)")
|
212 |
+
parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ")
|
213 |
+
parser.add_argument(
|
214 |
+
"--max_data_loader_n_workers",
|
215 |
+
type=int,
|
216 |
+
default=None,
|
217 |
+
help="enable image reading by DataLoader with this number of workers (faster) / DataLoaderによる画像読み込みを有効にしてこのワーカー数を適用する(読み込みを高速化)",
|
218 |
+
)
|
219 |
+
parser.add_argument(
|
220 |
+
"--max_resolution",
|
221 |
+
type=str,
|
222 |
+
default="512,512",
|
223 |
+
help="max resolution in fine tuning (width,height) / fine tuning時の最大画像サイズ 「幅,高さ」(使用メモリ量に関係します)",
|
224 |
+
)
|
225 |
+
parser.add_argument("--min_bucket_reso", type=int, default=256, help="minimum resolution for buckets / bucketの最小解像度")
|
226 |
+
parser.add_argument("--max_bucket_reso", type=int, default=1024, help="maximum resolution for buckets / bucketの最大解像度")
|
227 |
+
parser.add_argument(
|
228 |
+
"--bucket_reso_steps",
|
229 |
+
type=int,
|
230 |
+
default=64,
|
231 |
+
help="steps of resolution for buckets, divisible by 8 is recommended / bucketの解像度の単位、8で割り切れる値を推奨します",
|
232 |
+
)
|
233 |
+
parser.add_argument(
|
234 |
+
"--bucket_no_upscale", action="store_true", help="make bucket for each image without upscaling / 画像を拡大せずbucketを作成します"
|
235 |
+
)
|
236 |
+
parser.add_argument(
|
237 |
+
"--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度"
|
238 |
+
)
|
239 |
+
parser.add_argument(
|
240 |
+
"--full_path",
|
241 |
+
action="store_true",
|
242 |
+
help="use full path as image-key in metadata (supports multiple directories) / メタデータで画像キーをフルパスにする(複数の学習画像ディレクトリに対応)",
|
243 |
+
)
|
244 |
+
parser.add_argument(
|
245 |
+
"--flip_aug", action="store_true", help="flip augmentation, save latents for flipped images / 左右反転した画像もlatentを取得、保存する"
|
246 |
+
)
|
247 |
+
parser.add_argument(
|
248 |
+
"--skip_existing",
|
249 |
+
action="store_true",
|
250 |
+
help="skip images if npz already exists (both normal and flipped exists if flip_aug is enabled) / npzが既に存在する画像をスキップする(flip_aug有効時は通常、反転の両方が存在する画像をスキップ)",
|
251 |
+
)
|
252 |
+
parser.add_argument(
|
253 |
+
"--recursive",
|
254 |
+
action="store_true",
|
255 |
+
help="recursively look for training tags in all child folders of train_data_dir / train_data_dirのすべての子フォルダにある学習タグを再帰的に探す",
|
256 |
+
)
|
257 |
+
|
258 |
+
return parser
|
259 |
+
|
260 |
+
|
261 |
+
if __name__ == "__main__":
|
262 |
+
parser = setup_parser()
|
263 |
+
|
264 |
+
args = parser.parse_args()
|
265 |
+
main(args)
|