import os import argparse import torch from accelerate import DeepSpeedPlugin, Accelerator from .utils import setup_logging setup_logging() import logging logger = logging.getLogger(__name__) def add_deepspeed_arguments(parser: argparse.ArgumentParser): # DeepSpeed Arguments. https://huggingface.co/docs/accelerate/usage_guides/deepspeed parser.add_argument("--deepspeed", action="store_true", help="enable deepspeed training") parser.add_argument("--zero_stage", type=int, default=2, choices=[0, 1, 2, 3], help="Possible options are 0,1,2,3.") parser.add_argument( "--offload_optimizer_device", type=str, default=None, choices=[None, "cpu", "nvme"], help="Possible options are none|cpu|nvme. Only applicable with ZeRO Stages 2 and 3.", ) parser.add_argument( "--offload_optimizer_nvme_path", type=str, default=None, help="Possible options are /nvme|/local_nvme. Only applicable with ZeRO Stage 3.", ) parser.add_argument( "--offload_param_device", type=str, default=None, choices=[None, "cpu", "nvme"], help="Possible options are none|cpu|nvme. Only applicable with ZeRO Stage 3.", ) parser.add_argument( "--offload_param_nvme_path", type=str, default=None, help="Possible options are /nvme|/local_nvme. Only applicable with ZeRO Stage 3.", ) parser.add_argument( "--zero3_init_flag", action="store_true", help="Flag to indicate whether to enable `deepspeed.zero.Init` for constructing massive models." "Only applicable with ZeRO Stage-3.", ) parser.add_argument( "--zero3_save_16bit_model", action="store_true", help="Flag to indicate whether to save 16-bit model. Only applicable with ZeRO Stage-3.", ) parser.add_argument( "--fp16_master_weights_and_gradients", action="store_true", help="fp16_master_and_gradients requires optimizer to support keeping fp16 master and gradients while keeping the optimizer states in fp32.", ) def prepare_deepspeed_args(args: argparse.Namespace): if not args.deepspeed: return # To avoid RuntimeError: DataLoader worker exited unexpectedly with exit code 1. args.max_data_loader_n_workers = 1 def prepare_deepspeed_plugin(args: argparse.Namespace): if not args.deepspeed: return None try: import deepspeed except ImportError as e: logger.error( "deepspeed is not installed. please install deepspeed in your environment with following command. DS_BUILD_OPS=0 pip install deepspeed" ) exit(1) deepspeed_plugin = DeepSpeedPlugin( zero_stage=args.zero_stage, gradient_accumulation_steps=args.gradient_accumulation_steps, gradient_clipping=args.max_grad_norm, offload_optimizer_device=args.offload_optimizer_device, offload_optimizer_nvme_path=args.offload_optimizer_nvme_path, offload_param_device=args.offload_param_device, offload_param_nvme_path=args.offload_param_nvme_path, zero3_init_flag=args.zero3_init_flag, zero3_save_16bit_model=args.zero3_save_16bit_model, ) deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] = args.train_batch_size deepspeed_plugin.deepspeed_config["train_batch_size"] = ( args.train_batch_size * args.gradient_accumulation_steps * int(os.environ["WORLD_SIZE"]) ) deepspeed_plugin.set_mixed_precision(args.mixed_precision) if args.mixed_precision.lower() == "fp16": deepspeed_plugin.deepspeed_config["fp16"]["initial_scale_power"] = 0 # preventing overflow. if args.full_fp16 or args.fp16_master_weights_and_gradients: if args.offload_optimizer_device == "cpu" and args.zero_stage == 2: deepspeed_plugin.deepspeed_config["fp16"]["fp16_master_weights_and_grads"] = True logger.info("[DeepSpeed] full fp16 enable.") else: logger.info( "[DeepSpeed]full fp16, fp16_master_weights_and_grads currently only supported using ZeRO-Offload with DeepSpeedCPUAdam on ZeRO-2 stage." ) if args.offload_optimizer_device is not None: logger.info("[DeepSpeed] start to manually build cpu_adam.") deepspeed.ops.op_builder.CPUAdamBuilder().load() logger.info("[DeepSpeed] building cpu_adam done.") return deepspeed_plugin # Accelerate library does not support multiple models for deepspeed. So, we need to wrap multiple models into a single model. def prepare_deepspeed_model(args: argparse.Namespace, **models): # remove None from models models = {k: v for k, v in models.items() if v is not None} class DeepSpeedWrapper(torch.nn.Module): def __init__(self, **kw_models) -> None: super().__init__() self.models = torch.nn.ModuleDict() for key, model in kw_models.items(): if isinstance(model, list): model = torch.nn.ModuleList(model) assert isinstance( model, torch.nn.Module ), f"model must be an instance of torch.nn.Module, but got {key} is {type(model)}" self.models.update(torch.nn.ModuleDict({key: model})) def get_models(self): return self.models ds_model = DeepSpeedWrapper(**models) return ds_model