import os import sys import contextlib import torch import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import from .hijacks import ipex_hijacks # pylint: disable=protected-access, missing-function-docstring, line-too-long def ipex_init(): # pylint: disable=too-many-statements try: if hasattr(torch, "cuda") and hasattr(torch.cuda, "is_xpu_hijacked") and torch.cuda.is_xpu_hijacked: return True, "Skipping IPEX hijack" else: # Replace cuda with xpu: torch.cuda.current_device = torch.xpu.current_device torch.cuda.current_stream = torch.xpu.current_stream torch.cuda.device = torch.xpu.device torch.cuda.device_count = torch.xpu.device_count torch.cuda.device_of = torch.xpu.device_of torch.cuda.get_device_name = torch.xpu.get_device_name torch.cuda.get_device_properties = torch.xpu.get_device_properties torch.cuda.init = torch.xpu.init torch.cuda.is_available = torch.xpu.is_available torch.cuda.is_initialized = torch.xpu.is_initialized torch.cuda.is_current_stream_capturing = lambda: False torch.cuda.set_device = torch.xpu.set_device torch.cuda.stream = torch.xpu.stream torch.cuda.synchronize = torch.xpu.synchronize torch.cuda.Event = torch.xpu.Event torch.cuda.Stream = torch.xpu.Stream torch.cuda.FloatTensor = torch.xpu.FloatTensor torch.Tensor.cuda = torch.Tensor.xpu torch.Tensor.is_cuda = torch.Tensor.is_xpu torch.nn.Module.cuda = torch.nn.Module.xpu torch.UntypedStorage.cuda = torch.UntypedStorage.xpu torch.cuda._initialization_lock = torch.xpu.lazy_init._initialization_lock torch.cuda._initialized = torch.xpu.lazy_init._initialized torch.cuda._lazy_seed_tracker = torch.xpu.lazy_init._lazy_seed_tracker torch.cuda._queued_calls = torch.xpu.lazy_init._queued_calls torch.cuda._tls = torch.xpu.lazy_init._tls torch.cuda.threading = torch.xpu.lazy_init.threading torch.cuda.traceback = torch.xpu.lazy_init.traceback torch.cuda.Optional = torch.xpu.Optional torch.cuda.__cached__ = torch.xpu.__cached__ torch.cuda.__loader__ = torch.xpu.__loader__ torch.cuda.ComplexFloatStorage = torch.xpu.ComplexFloatStorage torch.cuda.Tuple = torch.xpu.Tuple torch.cuda.streams = torch.xpu.streams torch.cuda._lazy_new = torch.xpu._lazy_new torch.cuda.FloatStorage = torch.xpu.FloatStorage torch.cuda.Any = torch.xpu.Any torch.cuda.__doc__ = torch.xpu.__doc__ torch.cuda.default_generators = torch.xpu.default_generators torch.cuda.HalfTensor = torch.xpu.HalfTensor torch.cuda._get_device_index = torch.xpu._get_device_index torch.cuda.__path__ = torch.xpu.__path__ torch.cuda.Device = torch.xpu.Device torch.cuda.IntTensor = torch.xpu.IntTensor torch.cuda.ByteStorage = torch.xpu.ByteStorage torch.cuda.set_stream = torch.xpu.set_stream torch.cuda.BoolStorage = torch.xpu.BoolStorage torch.cuda.os = torch.xpu.os torch.cuda.torch = torch.xpu.torch torch.cuda.BFloat16Storage = torch.xpu.BFloat16Storage torch.cuda.Union = torch.xpu.Union torch.cuda.DoubleTensor = torch.xpu.DoubleTensor torch.cuda.ShortTensor = torch.xpu.ShortTensor torch.cuda.LongTensor = torch.xpu.LongTensor torch.cuda.IntStorage = torch.xpu.IntStorage torch.cuda.LongStorage = torch.xpu.LongStorage torch.cuda.__annotations__ = torch.xpu.__annotations__ torch.cuda.__package__ = torch.xpu.__package__ torch.cuda.__builtins__ = torch.xpu.__builtins__ torch.cuda.CharTensor = torch.xpu.CharTensor torch.cuda.List = torch.xpu.List torch.cuda._lazy_init = torch.xpu._lazy_init torch.cuda.BFloat16Tensor = torch.xpu.BFloat16Tensor torch.cuda.DoubleStorage = torch.xpu.DoubleStorage torch.cuda.ByteTensor = torch.xpu.ByteTensor torch.cuda.StreamContext = torch.xpu.StreamContext torch.cuda.ComplexDoubleStorage = torch.xpu.ComplexDoubleStorage torch.cuda.ShortStorage = torch.xpu.ShortStorage torch.cuda._lazy_call = torch.xpu._lazy_call torch.cuda.HalfStorage = torch.xpu.HalfStorage torch.cuda.random = torch.xpu.random torch.cuda._device = torch.xpu._device torch.cuda.classproperty = torch.xpu.classproperty torch.cuda.__name__ = torch.xpu.__name__ torch.cuda._device_t = torch.xpu._device_t torch.cuda.warnings = torch.xpu.warnings torch.cuda.__spec__ = torch.xpu.__spec__ torch.cuda.BoolTensor = torch.xpu.BoolTensor torch.cuda.CharStorage = torch.xpu.CharStorage torch.cuda.__file__ = torch.xpu.__file__ torch.cuda._is_in_bad_fork = torch.xpu.lazy_init._is_in_bad_fork # torch.cuda.is_current_stream_capturing = torch.xpu.is_current_stream_capturing # Memory: torch.cuda.memory = torch.xpu.memory if 'linux' in sys.platform and "WSL2" in os.popen("uname -a").read(): torch.xpu.empty_cache = lambda: None torch.cuda.empty_cache = torch.xpu.empty_cache torch.cuda.memory_stats = torch.xpu.memory_stats torch.cuda.memory_summary = torch.xpu.memory_summary torch.cuda.memory_snapshot = torch.xpu.memory_snapshot torch.cuda.memory_allocated = torch.xpu.memory_allocated torch.cuda.max_memory_allocated = torch.xpu.max_memory_allocated torch.cuda.memory_reserved = torch.xpu.memory_reserved torch.cuda.memory_cached = torch.xpu.memory_reserved torch.cuda.max_memory_reserved = torch.xpu.max_memory_reserved torch.cuda.max_memory_cached = torch.xpu.max_memory_reserved torch.cuda.reset_peak_memory_stats = torch.xpu.reset_peak_memory_stats torch.cuda.reset_max_memory_cached = torch.xpu.reset_peak_memory_stats torch.cuda.reset_max_memory_allocated = torch.xpu.reset_peak_memory_stats torch.cuda.memory_stats_as_nested_dict = torch.xpu.memory_stats_as_nested_dict torch.cuda.reset_accumulated_memory_stats = torch.xpu.reset_accumulated_memory_stats # RNG: torch.cuda.get_rng_state = torch.xpu.get_rng_state torch.cuda.get_rng_state_all = torch.xpu.get_rng_state_all torch.cuda.set_rng_state = torch.xpu.set_rng_state torch.cuda.set_rng_state_all = torch.xpu.set_rng_state_all torch.cuda.manual_seed = torch.xpu.manual_seed torch.cuda.manual_seed_all = torch.xpu.manual_seed_all torch.cuda.seed = torch.xpu.seed torch.cuda.seed_all = torch.xpu.seed_all torch.cuda.initial_seed = torch.xpu.initial_seed # AMP: torch.cuda.amp = torch.xpu.amp torch.is_autocast_enabled = torch.xpu.is_autocast_xpu_enabled torch.get_autocast_gpu_dtype = torch.xpu.get_autocast_xpu_dtype if not hasattr(torch.cuda.amp, "common"): torch.cuda.amp.common = contextlib.nullcontext() torch.cuda.amp.common.amp_definitely_not_available = lambda: False try: torch.cuda.amp.GradScaler = torch.xpu.amp.GradScaler except Exception: # pylint: disable=broad-exception-caught try: from .gradscaler import gradscaler_init # pylint: disable=import-outside-toplevel, import-error gradscaler_init() torch.cuda.amp.GradScaler = torch.xpu.amp.GradScaler except Exception: # pylint: disable=broad-exception-caught torch.cuda.amp.GradScaler = ipex.cpu.autocast._grad_scaler.GradScaler # C torch._C._cuda_getCurrentRawStream = ipex._C._getCurrentStream ipex._C._DeviceProperties.multi_processor_count = ipex._C._DeviceProperties.gpu_subslice_count ipex._C._DeviceProperties.major = 2024 ipex._C._DeviceProperties.minor = 0 # Fix functions with ipex: torch.cuda.mem_get_info = lambda device=None: [(torch.xpu.get_device_properties(device).total_memory - torch.xpu.memory_reserved(device)), torch.xpu.get_device_properties(device).total_memory] torch._utils._get_available_device_type = lambda: "xpu" torch.has_cuda = True torch.cuda.has_half = True torch.cuda.is_bf16_supported = lambda *args, **kwargs: True torch.cuda.is_fp16_supported = lambda *args, **kwargs: True torch.backends.cuda.is_built = lambda *args, **kwargs: True torch.version.cuda = "12.1" torch.cuda.get_device_capability = lambda *args, **kwargs: [12,1] torch.cuda.get_device_properties.major = 12 torch.cuda.get_device_properties.minor = 1 torch.cuda.ipc_collect = lambda *args, **kwargs: None torch.cuda.utilization = lambda *args, **kwargs: 0 ipex_hijacks() if not torch.xpu.has_fp64_dtype() or os.environ.get('IPEX_FORCE_ATTENTION_SLICE', None) is not None: try: from .diffusers import ipex_diffusers ipex_diffusers() except Exception: # pylint: disable=broad-exception-caught pass torch.cuda.is_xpu_hijacked = True except Exception as e: return False, e return True, None