import argparse import os import re from pathlib import Path from PIL import Image from tqdm import tqdm import torch from library.device_utils import init_ipex, get_preferred_device init_ipex() from transformers import AutoProcessor, AutoModelForCausalLM from transformers.generation.utils import GenerationMixin import library.train_util as train_util from library.utils import setup_logging setup_logging() import logging logger = logging.getLogger(__name__) DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") PATTERN_REPLACE = [ re.compile(r'(has|with|and) the (words?|letters?|name) (" ?[^"]*"|\w+)( ?(is )?(on|in) (the |her |their |him )?\w+)?'), re.compile(r'(with a sign )?that says ?(" ?[^"]*"|\w+)( ?on it)?'), re.compile(r"(with a sign )?that says ?(' ?(i'm)?[^']*'|\w+)( ?on it)?"), re.compile(r"with the number \d+ on (it|\w+ \w+)"), re.compile(r'with the words "'), re.compile(r"word \w+ on it"), re.compile(r"that says the word \w+ on it"), re.compile("that says'the word \"( on it)?"), ] # 誤検知しまくりの with the word xxxx を消す def remove_words(captions, debug): removed_caps = [] for caption in captions: cap = caption for pat in PATTERN_REPLACE: cap = pat.sub("", cap) if debug and cap != caption: logger.info(caption) logger.info(cap) removed_caps.append(cap) return removed_caps def collate_fn_remove_corrupted(batch): """Collate function that allows to remove corrupted examples in the dataloader. It expects that the dataloader returns 'None' when that occurs. The 'None's in the batch are removed. """ # Filter out all the Nones (corrupted examples) batch = list(filter(lambda x: x is not None, batch)) return batch def main(args): r""" transformers 4.30.2で、バッチサイズ>1でも動くようになったので、以下コメントアウト # GITにバッチサイズが1より大きくても動くようにパッチを当てる: transformers 4.26.0用 org_prepare_input_ids_for_generation = GenerationMixin._prepare_input_ids_for_generation curr_batch_size = [args.batch_size] # ループの最後で件数がbatch_size未満になるので入れ替えられるように # input_idsがバッチサイズと同じ件数である必要がある:バッチサイズはこの関数から参照できないので外から渡す # ここより上で置き換えようとするとすごく大変 def _prepare_input_ids_for_generation_patch(self, bos_token_id, encoder_outputs): input_ids = org_prepare_input_ids_for_generation(self, bos_token_id, encoder_outputs) if input_ids.size()[0] != curr_batch_size[0]: input_ids = input_ids.repeat(curr_batch_size[0], 1) return input_ids GenerationMixin._prepare_input_ids_for_generation = _prepare_input_ids_for_generation_patch """ logger.info(f"load images from {args.train_data_dir}") train_data_dir_path = Path(args.train_data_dir) image_paths = train_util.glob_images_pathlib(train_data_dir_path, args.recursive) logger.info(f"found {len(image_paths)} images.") # できればcacheに依存せず明示的にダウンロードしたい logger.info(f"loading GIT: {args.model_id}") git_processor = AutoProcessor.from_pretrained(args.model_id) git_model = AutoModelForCausalLM.from_pretrained(args.model_id).to(DEVICE) logger.info("GIT loaded") # captioningする def run_batch(path_imgs): imgs = [im for _, im in path_imgs] # curr_batch_size[0] = len(path_imgs) inputs = git_processor(images=imgs, return_tensors="pt").to(DEVICE) # 画像はpil形式 generated_ids = git_model.generate(pixel_values=inputs.pixel_values, max_length=args.max_length) captions = git_processor.batch_decode(generated_ids, skip_special_tokens=True) if args.remove_words: captions = remove_words(captions, args.debug) for (image_path, _), caption in zip(path_imgs, captions): with open(os.path.splitext(image_path)[0] + args.caption_extension, "wt", encoding="utf-8") as f: f.write(caption + "\n") if args.debug: logger.info(f"{image_path} {caption}") # 読み込みの高速化のためにDataLoaderを使うオプション if args.max_data_loader_n_workers is not None: dataset = train_util.ImageLoadingDataset(image_paths) data = torch.utils.data.DataLoader( dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.max_data_loader_n_workers, collate_fn=collate_fn_remove_corrupted, drop_last=False, ) else: data = [[(None, ip)] for ip in image_paths] b_imgs = [] for data_entry in tqdm(data, smoothing=0.0): for data in data_entry: if data is None: continue image, image_path = data if image is None: try: image = Image.open(image_path) if image.mode != "RGB": image = image.convert("RGB") except Exception as e: logger.error(f"Could not load image path / 画像を読み込めません: {image_path}, error: {e}") continue b_imgs.append((image_path, image)) if len(b_imgs) >= args.batch_size: run_batch(b_imgs) b_imgs.clear() if len(b_imgs) > 0: run_batch(b_imgs) logger.info("done!") def setup_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser() parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ") parser.add_argument("--caption_extension", type=str, default=".caption", help="extension of caption file / 出力されるキャプションファイルの拡張子") parser.add_argument( "--model_id", type=str, default="microsoft/git-large-textcaps", help="model id for GIT in Hugging Face / 使用するGITのHugging FaceのモデルID", ) parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ") parser.add_argument( "--max_data_loader_n_workers", type=int, default=None, help="enable image reading by DataLoader with this number of workers (faster) / DataLoaderによる画像読み込みを有効にしてこのワーカー数を適用する(読み込みを高速化)", ) parser.add_argument("--max_length", type=int, default=50, help="max length of caption / captionの最大長") parser.add_argument( "--remove_words", action="store_true", help="remove like `with the words xxx` from caption / `with the words xxx`のような部分をキャプションから削除する", ) parser.add_argument("--debug", action="store_true", help="debug mode") parser.add_argument("--recursive", action="store_true", help="search for images in subfolders recursively / サブフォルダを再帰的に検索する") return parser if __name__ == "__main__": parser = setup_parser() args = parser.parse_args() main(args)