import argparse import json import math import os import random import time from multiprocessing import Value from types import SimpleNamespace import toml from tqdm import tqdm import torch from library.device_utils import init_ipex, clean_memory_on_device init_ipex() from torch.nn.parallel import DistributedDataParallel as DDP from accelerate.utils import set_seed from diffusers import DDPMScheduler, ControlNetModel from safetensors.torch import load_file from library import deepspeed_utils, sai_model_spec, sdxl_model_util, sdxl_original_unet, sdxl_train_util import library.model_util as model_util import library.train_util as train_util import library.config_util as config_util from library.config_util import ( ConfigSanitizer, BlueprintGenerator, ) import library.huggingface_util as huggingface_util import library.custom_train_functions as custom_train_functions from library.custom_train_functions import ( add_v_prediction_like_loss, apply_snr_weight, prepare_scheduler_for_custom_training, pyramid_noise_like, apply_noise_offset, scale_v_prediction_loss_like_noise_prediction, apply_debiased_estimation, ) import networks.control_net_lllite as control_net_lllite from library.utils import setup_logging, add_logging_arguments setup_logging() import logging logger = logging.getLogger(__name__) # TODO 他のスクリプトと共通化する def generate_step_logs(args: argparse.Namespace, current_loss, avr_loss, lr_scheduler): logs = { "loss/current": current_loss, "loss/average": avr_loss, "lr": lr_scheduler.get_last_lr()[0], } if args.optimizer_type.lower().startswith("DAdapt".lower()): logs["lr/d*lr"] = lr_scheduler.optimizers[-1].param_groups[0]["d"] * lr_scheduler.optimizers[-1].param_groups[0]["lr"] return logs def train(args): train_util.verify_training_args(args) train_util.prepare_dataset_args(args, True) sdxl_train_util.verify_sdxl_training_args(args) setup_logging(args, reset=True) cache_latents = args.cache_latents use_user_config = args.dataset_config is not None if args.seed is None: args.seed = random.randint(0, 2**32) set_seed(args.seed) tokenizer1, tokenizer2 = sdxl_train_util.load_tokenizers(args) # データセットを準備する blueprint_generator = BlueprintGenerator(ConfigSanitizer(False, False, True, True)) if use_user_config: logger.info(f"Load dataset config from {args.dataset_config}") user_config = config_util.load_user_config(args.dataset_config) ignored = ["train_data_dir", "conditioning_data_dir"] if any(getattr(args, attr) is not None for attr in ignored): logger.warning( "ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format( ", ".join(ignored) ) ) else: user_config = { "datasets": [ { "subsets": config_util.generate_controlnet_subsets_config_by_subdirs( args.train_data_dir, args.conditioning_data_dir, args.caption_extension, ) } ] } blueprint = blueprint_generator.generate(user_config, args, tokenizer=[tokenizer1, tokenizer2]) train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group) current_epoch = Value("i", 0) current_step = Value("i", 0) ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None collator = train_util.collator_class(current_epoch, current_step, ds_for_collator) train_dataset_group.verify_bucket_reso_steps(32) if args.debug_dataset: train_util.debug_dataset(train_dataset_group) return if len(train_dataset_group) == 0: logger.error( "No data found. Please verify arguments (train_data_dir must be the parent of folders with images) / 画像がありません。引数指定を確認してください(train_data_dirには画像があるフォルダではなく、画像があるフォルダの親フォルダを指定する必要があります)" ) return if cache_latents: assert ( train_dataset_group.is_latent_cacheable() ), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません" else: logger.warning( "WARNING: random_crop is not supported yet for ControlNet training / ControlNetの学習ではrandom_cropはまだサポートされていません" ) if args.cache_text_encoder_outputs: assert ( train_dataset_group.is_text_encoder_output_cacheable() ), "when caching Text Encoder output, either caption_dropout_rate, shuffle_caption, token_warmup_step or caption_tag_dropout_rate cannot be used / Text Encoderの出力をキャッシュするときはcaption_dropout_rate, shuffle_caption, token_warmup_step, caption_tag_dropout_rateは使えません" # acceleratorを準備する logger.info("prepare accelerator") accelerator = train_util.prepare_accelerator(args) is_main_process = accelerator.is_main_process # mixed precisionに対応した型を用意しておき適宜castする weight_dtype, save_dtype = train_util.prepare_dtype(args) vae_dtype = torch.float32 if args.no_half_vae else weight_dtype # モデルを読み込む ( load_stable_diffusion_format, text_encoder1, text_encoder2, vae, unet, logit_scale, ckpt_info, ) = sdxl_train_util.load_target_model(args, accelerator, sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, weight_dtype) # モデルに xformers とか memory efficient attention を組み込む train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa) # 学習を準備する if cache_latents: vae.to(accelerator.device, dtype=vae_dtype) vae.requires_grad_(False) vae.eval() with torch.no_grad(): train_dataset_group.cache_latents( vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process, ) vae.to("cpu") clean_memory_on_device(accelerator.device) accelerator.wait_for_everyone() # TextEncoderの出力をキャッシュする if args.cache_text_encoder_outputs: # Text Encodes are eval and no grad with torch.no_grad(): train_dataset_group.cache_text_encoder_outputs( (tokenizer1, tokenizer2), (text_encoder1, text_encoder2), accelerator.device, None, args.cache_text_encoder_outputs_to_disk, accelerator.is_main_process, ) accelerator.wait_for_everyone() # prepare ControlNet network = control_net_lllite.ControlNetLLLite(unet, args.cond_emb_dim, args.network_dim, args.network_dropout) network.apply_to() if args.network_weights is not None: info = network.load_weights(args.network_weights) accelerator.print(f"load ControlNet weights from {args.network_weights}: {info}") if args.gradient_checkpointing: unet.enable_gradient_checkpointing() network.enable_gradient_checkpointing() # may have no effect # 学習に必要なクラスを準備する accelerator.print("prepare optimizer, data loader etc.") trainable_params = list(network.prepare_optimizer_params()) logger.info(f"trainable params count: {len(trainable_params)}") logger.info(f"number of trainable parameters: {sum(p.numel() for p in trainable_params if p.requires_grad)}") _, _, optimizer = train_util.get_optimizer(args, trainable_params) # dataloaderを準備する # DataLoaderのプロセス数:0 は persistent_workers が使えないので注意 n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers train_dataloader = torch.utils.data.DataLoader( train_dataset_group, batch_size=1, shuffle=True, collate_fn=collator, num_workers=n_workers, persistent_workers=args.persistent_data_loader_workers, ) # 学習ステップ数を計算する if args.max_train_epochs is not None: args.max_train_steps = args.max_train_epochs * math.ceil( len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps ) accelerator.print( f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}" ) # データセット側にも学習ステップを送信 train_dataset_group.set_max_train_steps(args.max_train_steps) # lr schedulerを用意する lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes) # 実験的機能:勾配も含めたfp16/bf16学習を行う モデル全体をfp16/bf16にする if args.full_fp16: assert ( args.mixed_precision == "fp16" ), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。" accelerator.print("enable full fp16 training.") unet.to(weight_dtype) network.to(weight_dtype) elif args.full_bf16: assert ( args.mixed_precision == "bf16" ), "full_bf16 requires mixed precision='bf16' / full_bf16を使う場合はmixed_precision='bf16'を指定してください。" accelerator.print("enable full bf16 training.") unet.to(weight_dtype) network.to(weight_dtype) # acceleratorがなんかよろしくやってくれるらしい unet, network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, network, optimizer, train_dataloader, lr_scheduler ) network: control_net_lllite.ControlNetLLLite if args.gradient_checkpointing: unet.train() # according to TI example in Diffusers, train is required -> これオリジナルのU-Netしたので本当は外せる else: unet.eval() network.prepare_grad_etc() # TextEncoderの出力をキャッシュするときにはCPUへ移動する if args.cache_text_encoder_outputs: # move Text Encoders for sampling images. Text Encoder doesn't work on CPU with fp16 text_encoder1.to("cpu", dtype=torch.float32) text_encoder2.to("cpu", dtype=torch.float32) clean_memory_on_device(accelerator.device) else: # make sure Text Encoders are on GPU text_encoder1.to(accelerator.device) text_encoder2.to(accelerator.device) if not cache_latents: vae.requires_grad_(False) vae.eval() vae.to(accelerator.device, dtype=vae_dtype) # 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする if args.full_fp16: train_util.patch_accelerator_for_fp16_training(accelerator) # resumeする train_util.resume_from_local_or_hf_if_specified(accelerator, args) # epoch数を計算する num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0): args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1 # 学習する # TODO: find a way to handle total batch size when there are multiple datasets accelerator.print("running training / 学習開始") accelerator.print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}") accelerator.print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}") accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") accelerator.print(f" num epochs / epoch数: {num_train_epochs}") accelerator.print( f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}" ) # logger.info(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}") accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps") global_step = 0 noise_scheduler = DDPMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False ) prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device) if args.zero_terminal_snr: custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler) if accelerator.is_main_process: init_kwargs = {} if args.log_tracker_config is not None: init_kwargs = toml.load(args.log_tracker_config) accelerator.init_trackers( "lllite_control_net_train" if args.log_tracker_name is None else args.log_tracker_name, init_kwargs=init_kwargs ) loss_recorder = train_util.LossRecorder() del train_dataset_group # function for saving/removing def save_model(ckpt_name, unwrapped_nw, steps, epoch_no, force_sync_upload=False): os.makedirs(args.output_dir, exist_ok=True) ckpt_file = os.path.join(args.output_dir, ckpt_name) accelerator.print(f"\nsaving checkpoint: {ckpt_file}") sai_metadata = train_util.get_sai_model_spec(None, args, True, True, False) sai_metadata["modelspec.architecture"] = sai_model_spec.ARCH_SD_XL_V1_BASE + "/control-net-lllite" unwrapped_nw.save_weights(ckpt_file, save_dtype, sai_metadata) if args.huggingface_repo_id is not None: huggingface_util.upload(args, ckpt_file, "/" + ckpt_name, force_sync_upload=force_sync_upload) def remove_model(old_ckpt_name): old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name) if os.path.exists(old_ckpt_file): accelerator.print(f"removing old checkpoint: {old_ckpt_file}") os.remove(old_ckpt_file) # training loop for epoch in range(num_train_epochs): accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}") current_epoch.value = epoch + 1 network.on_epoch_start() # train() for step, batch in enumerate(train_dataloader): current_step.value = global_step with accelerator.accumulate(network): with torch.no_grad(): if "latents" in batch and batch["latents"] is not None: latents = batch["latents"].to(accelerator.device).to(dtype=weight_dtype) else: # latentに変換 latents = vae.encode(batch["images"].to(dtype=vae_dtype)).latent_dist.sample().to(dtype=weight_dtype) # NaNが含まれていれば警告を表示し0に置き換える if torch.any(torch.isnan(latents)): accelerator.print("NaN found in latents, replacing with zeros") latents = torch.nan_to_num(latents, 0, out=latents) latents = latents * sdxl_model_util.VAE_SCALE_FACTOR if "text_encoder_outputs1_list" not in batch or batch["text_encoder_outputs1_list"] is None: input_ids1 = batch["input_ids"] input_ids2 = batch["input_ids2"] with torch.no_grad(): # Get the text embedding for conditioning input_ids1 = input_ids1.to(accelerator.device) input_ids2 = input_ids2.to(accelerator.device) encoder_hidden_states1, encoder_hidden_states2, pool2 = train_util.get_hidden_states_sdxl( args.max_token_length, input_ids1, input_ids2, tokenizer1, tokenizer2, text_encoder1, text_encoder2, None if not args.full_fp16 else weight_dtype, ) else: encoder_hidden_states1 = batch["text_encoder_outputs1_list"].to(accelerator.device).to(weight_dtype) encoder_hidden_states2 = batch["text_encoder_outputs2_list"].to(accelerator.device).to(weight_dtype) pool2 = batch["text_encoder_pool2_list"].to(accelerator.device).to(weight_dtype) # get size embeddings orig_size = batch["original_sizes_hw"] crop_size = batch["crop_top_lefts"] target_size = batch["target_sizes_hw"] embs = sdxl_train_util.get_size_embeddings(orig_size, crop_size, target_size, accelerator.device).to(weight_dtype) # concat embeddings vector_embedding = torch.cat([pool2, embs], dim=1).to(weight_dtype) text_embedding = torch.cat([encoder_hidden_states1, encoder_hidden_states2], dim=2).to(weight_dtype) # Sample noise, sample a random timestep for each image, and add noise to the latents, # with noise offset and/or multires noise if specified noise, noisy_latents, timesteps, huber_c = train_util.get_noise_noisy_latents_and_timesteps(args, noise_scheduler, latents) noisy_latents = noisy_latents.to(weight_dtype) # TODO check why noisy_latents is not weight_dtype controlnet_image = batch["conditioning_images"].to(dtype=weight_dtype) with accelerator.autocast(): # conditioning imageをControlNetに渡す / pass conditioning image to ControlNet # 内部でcond_embに変換される / it will be converted to cond_emb inside network.set_cond_image(controlnet_image) # それらの値を使いつつ、U-Netでノイズを予測する / predict noise with U-Net using those values noise_pred = unet(noisy_latents, timesteps, text_embedding, vector_embedding) if args.v_parameterization: # v-parameterization training target = noise_scheduler.get_velocity(latents, noise, timesteps) else: target = noise loss = train_util.conditional_loss(noise_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c) loss = loss.mean([1, 2, 3]) loss_weights = batch["loss_weights"] # 各sampleごとのweight loss = loss * loss_weights if args.min_snr_gamma: loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma, args.v_parameterization) if args.scale_v_pred_loss_like_noise_pred: loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler) if args.v_pred_like_loss: loss = add_v_prediction_like_loss(loss, timesteps, noise_scheduler, args.v_pred_like_loss) if args.debiased_estimation_loss: loss = apply_debiased_estimation(loss, timesteps, noise_scheduler) loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし accelerator.backward(loss) if accelerator.sync_gradients and args.max_grad_norm != 0.0: params_to_clip = network.get_trainable_params() accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad(set_to_none=True) # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 # sdxl_train_util.sample_images(accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet) # 指定ステップごとにモデルを保存 if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0: accelerator.wait_for_everyone() if accelerator.is_main_process: ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, global_step) save_model(ckpt_name, accelerator.unwrap_model(network), global_step, epoch) if args.save_state: train_util.save_and_remove_state_stepwise(args, accelerator, global_step) remove_step_no = train_util.get_remove_step_no(args, global_step) if remove_step_no is not None: remove_ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, remove_step_no) remove_model(remove_ckpt_name) current_loss = loss.detach().item() loss_recorder.add(epoch=epoch, step=step, loss=current_loss) avr_loss: float = loss_recorder.moving_average logs = {"avr_loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) if args.logging_dir is not None: logs = generate_step_logs(args, current_loss, avr_loss, lr_scheduler) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break if args.logging_dir is not None: logs = {"loss/epoch": loss_recorder.moving_average} accelerator.log(logs, step=epoch + 1) accelerator.wait_for_everyone() # 指定エポックごとにモデルを保存 if args.save_every_n_epochs is not None: saving = (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs if is_main_process and saving: ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, epoch + 1) save_model(ckpt_name, accelerator.unwrap_model(network), global_step, epoch + 1) remove_epoch_no = train_util.get_remove_epoch_no(args, epoch + 1) if remove_epoch_no is not None: remove_ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, remove_epoch_no) remove_model(remove_ckpt_name) if args.save_state: train_util.save_and_remove_state_on_epoch_end(args, accelerator, epoch + 1) # self.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet) # end of epoch if is_main_process: network = accelerator.unwrap_model(network) accelerator.end_training() if is_main_process and args.save_state: train_util.save_state_on_train_end(args, accelerator) if is_main_process: ckpt_name = train_util.get_last_ckpt_name(args, "." + args.save_model_as) save_model(ckpt_name, network, global_step, num_train_epochs, force_sync_upload=True) logger.info("model saved.") def setup_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser() add_logging_arguments(parser) train_util.add_sd_models_arguments(parser) train_util.add_dataset_arguments(parser, False, True, True) train_util.add_training_arguments(parser, False) deepspeed_utils.add_deepspeed_arguments(parser) train_util.add_optimizer_arguments(parser) config_util.add_config_arguments(parser) custom_train_functions.add_custom_train_arguments(parser) sdxl_train_util.add_sdxl_training_arguments(parser) parser.add_argument( "--save_model_as", type=str, default="safetensors", choices=[None, "ckpt", "pt", "safetensors"], help="format to save the model (default is .safetensors) / モデル保存時の形式(デフォルトはsafetensors)", ) parser.add_argument( "--cond_emb_dim", type=int, default=None, help="conditioning embedding dimension / 条件付け埋め込みの次元数" ) parser.add_argument( "--network_weights", type=str, default=None, help="pretrained weights for network / 学習するネットワークの初期重み" ) parser.add_argument("--network_dim", type=int, default=None, help="network dimensions (rank) / モジュールの次元数") parser.add_argument( "--network_dropout", type=float, default=None, help="Drops neurons out of training every step (0 or None is default behavior (no dropout), 1 would drop all neurons) / 訓練時に毎ステップでニューロンをdropする(0またはNoneはdropoutなし、1は全ニューロンをdropout)", ) parser.add_argument( "--conditioning_data_dir", type=str, default=None, help="conditioning data directory / 条件付けデータのディレクトリ", ) parser.add_argument( "--no_half_vae", action="store_true", help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う", ) return parser if __name__ == "__main__": # sdxl_original_unet.USE_REENTRANT = False parser = setup_parser() args = parser.parse_args() train_util.verify_command_line_training_args(args) args = train_util.read_config_from_file(args, parser) train(args)