import argparse import os import regex import torch from library.device_utils import init_ipex init_ipex() from library import sdxl_model_util, sdxl_train_util, train_util import train_textual_inversion class SdxlTextualInversionTrainer(train_textual_inversion.TextualInversionTrainer): def __init__(self): super().__init__() self.vae_scale_factor = sdxl_model_util.VAE_SCALE_FACTOR self.is_sdxl = True def assert_extra_args(self, args, train_dataset_group): super().assert_extra_args(args, train_dataset_group) sdxl_train_util.verify_sdxl_training_args(args, supportTextEncoderCaching=False) train_dataset_group.verify_bucket_reso_steps(32) def load_target_model(self, args, weight_dtype, accelerator): ( load_stable_diffusion_format, text_encoder1, text_encoder2, vae, unet, logit_scale, ckpt_info, ) = sdxl_train_util.load_target_model(args, accelerator, sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, weight_dtype) self.load_stable_diffusion_format = load_stable_diffusion_format self.logit_scale = logit_scale self.ckpt_info = ckpt_info return sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, [text_encoder1, text_encoder2], vae, unet def load_tokenizer(self, args): tokenizer = sdxl_train_util.load_tokenizers(args) return tokenizer def get_text_cond(self, args, accelerator, batch, tokenizers, text_encoders, weight_dtype): input_ids1 = batch["input_ids"] input_ids2 = batch["input_ids2"] with torch.enable_grad(): input_ids1 = input_ids1.to(accelerator.device) input_ids2 = input_ids2.to(accelerator.device) encoder_hidden_states1, encoder_hidden_states2, pool2 = train_util.get_hidden_states_sdxl( args.max_token_length, input_ids1, input_ids2, tokenizers[0], tokenizers[1], text_encoders[0], text_encoders[1], None if not args.full_fp16 else weight_dtype, accelerator=accelerator, ) return encoder_hidden_states1, encoder_hidden_states2, pool2 def call_unet(self, args, accelerator, unet, noisy_latents, timesteps, text_conds, batch, weight_dtype): noisy_latents = noisy_latents.to(weight_dtype) # TODO check why noisy_latents is not weight_dtype # get size embeddings orig_size = batch["original_sizes_hw"] crop_size = batch["crop_top_lefts"] target_size = batch["target_sizes_hw"] embs = sdxl_train_util.get_size_embeddings(orig_size, crop_size, target_size, accelerator.device).to(weight_dtype) # concat embeddings encoder_hidden_states1, encoder_hidden_states2, pool2 = text_conds vector_embedding = torch.cat([pool2, embs], dim=1).to(weight_dtype) text_embedding = torch.cat([encoder_hidden_states1, encoder_hidden_states2], dim=2).to(weight_dtype) noise_pred = unet(noisy_latents, timesteps, text_embedding, vector_embedding) return noise_pred def sample_images(self, accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet, prompt_replacement): sdxl_train_util.sample_images( accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet, prompt_replacement ) def save_weights(self, file, updated_embs, save_dtype, metadata): state_dict = {"clip_l": updated_embs[0], "clip_g": updated_embs[1]} if save_dtype is not None: for key in list(state_dict.keys()): v = state_dict[key] v = v.detach().clone().to("cpu").to(save_dtype) state_dict[key] = v if os.path.splitext(file)[1] == ".safetensors": from safetensors.torch import save_file save_file(state_dict, file, metadata) else: torch.save(state_dict, file) def load_weights(self, file): if os.path.splitext(file)[1] == ".safetensors": from safetensors.torch import load_file data = load_file(file) else: data = torch.load(file, map_location="cpu") emb_l = data.get("clip_l", None) # ViT-L text encoder 1 emb_g = data.get("clip_g", None) # BiG-G text encoder 2 assert ( emb_l is not None or emb_g is not None ), f"weight file does not contains weights for text encoder 1 or 2 / 重みファイルにテキストエンコーダー1または2の重みが含まれていません: {file}" return [emb_l, emb_g] def setup_parser() -> argparse.ArgumentParser: parser = train_textual_inversion.setup_parser() # don't add sdxl_train_util.add_sdxl_training_arguments(parser): because it only adds text encoder caching # sdxl_train_util.add_sdxl_training_arguments(parser) return parser if __name__ == "__main__": parser = setup_parser() args = parser.parse_args() train_util.verify_command_line_training_args(args) args = train_util.read_config_from_file(args, parser) trainer = SdxlTextualInversionTrainer() trainer.train(args)