import argparse import json import math import os import random import time from multiprocessing import Value from types import SimpleNamespace import toml from tqdm import tqdm import torch from library import deepspeed_utils from library.device_utils import init_ipex, clean_memory_on_device init_ipex() from torch.nn.parallel import DistributedDataParallel as DDP from accelerate.utils import set_seed from diffusers import DDPMScheduler, ControlNetModel from safetensors.torch import load_file import library.model_util as model_util import library.train_util as train_util import library.config_util as config_util from library.config_util import ( ConfigSanitizer, BlueprintGenerator, ) import library.huggingface_util as huggingface_util import library.custom_train_functions as custom_train_functions from library.custom_train_functions import ( apply_snr_weight, pyramid_noise_like, apply_noise_offset, ) from library.utils import setup_logging, add_logging_arguments setup_logging() import logging logger = logging.getLogger(__name__) # TODO 他のスクリプトと共通化する def generate_step_logs(args: argparse.Namespace, current_loss, avr_loss, lr_scheduler): logs = { "loss/current": current_loss, "loss/average": avr_loss, "lr": lr_scheduler.get_last_lr()[0], } if args.optimizer_type.lower().startswith("DAdapt".lower()): logs["lr/d*lr"] = lr_scheduler.optimizers[-1].param_groups[0]["d"] * lr_scheduler.optimizers[-1].param_groups[0]["lr"] return logs def train(args): # session_id = random.randint(0, 2**32) # training_started_at = time.time() train_util.verify_training_args(args) train_util.prepare_dataset_args(args, True) setup_logging(args, reset=True) cache_latents = args.cache_latents use_user_config = args.dataset_config is not None if args.seed is None: args.seed = random.randint(0, 2**32) set_seed(args.seed) tokenizer = train_util.load_tokenizer(args) # データセットを準備する blueprint_generator = BlueprintGenerator(ConfigSanitizer(False, False, True, True)) if use_user_config: logger.info(f"Load dataset config from {args.dataset_config}") user_config = config_util.load_user_config(args.dataset_config) ignored = ["train_data_dir", "conditioning_data_dir"] if any(getattr(args, attr) is not None for attr in ignored): logger.warning( "ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format( ", ".join(ignored) ) ) else: user_config = { "datasets": [ { "subsets": config_util.generate_controlnet_subsets_config_by_subdirs( args.train_data_dir, args.conditioning_data_dir, args.caption_extension, ) } ] } blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer) train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group) current_epoch = Value("i", 0) current_step = Value("i", 0) ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None collator = train_util.collator_class(current_epoch, current_step, ds_for_collator) if args.debug_dataset: train_util.debug_dataset(train_dataset_group) return if len(train_dataset_group) == 0: logger.error( "No data found. Please verify arguments (train_data_dir must be the parent of folders with images) / 画像がありません。引数指定を確認してください(train_data_dirには画像があるフォルダではなく、画像があるフォルダの親フォルダを指定する必要があります)" ) return if cache_latents: assert ( train_dataset_group.is_latent_cacheable() ), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません" # acceleratorを準備する logger.info("prepare accelerator") accelerator = train_util.prepare_accelerator(args) is_main_process = accelerator.is_main_process # mixed precisionに対応した型を用意しておき適宜castする weight_dtype, save_dtype = train_util.prepare_dtype(args) # モデルを読み込む text_encoder, vae, unet, _ = train_util.load_target_model( args, weight_dtype, accelerator, unet_use_linear_projection_in_v2=True ) # DiffusersのControlNetが使用するデータを準備する if args.v2: unet.config = { "act_fn": "silu", "attention_head_dim": [5, 10, 20, 20], "block_out_channels": [320, 640, 1280, 1280], "center_input_sample": False, "cross_attention_dim": 1024, "down_block_types": ["CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D"], "downsample_padding": 1, "dual_cross_attention": False, "flip_sin_to_cos": True, "freq_shift": 0, "in_channels": 4, "layers_per_block": 2, "mid_block_scale_factor": 1, "norm_eps": 1e-05, "norm_num_groups": 32, "num_class_embeds": None, "only_cross_attention": False, "out_channels": 4, "sample_size": 96, "up_block_types": ["UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"], "use_linear_projection": True, "upcast_attention": True, "only_cross_attention": False, "downsample_padding": 1, "use_linear_projection": True, "class_embed_type": None, "num_class_embeds": None, "resnet_time_scale_shift": "default", "projection_class_embeddings_input_dim": None, } else: unet.config = { "act_fn": "silu", "attention_head_dim": 8, "block_out_channels": [320, 640, 1280, 1280], "center_input_sample": False, "cross_attention_dim": 768, "down_block_types": ["CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D"], "downsample_padding": 1, "flip_sin_to_cos": True, "freq_shift": 0, "in_channels": 4, "layers_per_block": 2, "mid_block_scale_factor": 1, "norm_eps": 1e-05, "norm_num_groups": 32, "out_channels": 4, "sample_size": 64, "up_block_types": ["UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"], "only_cross_attention": False, "downsample_padding": 1, "use_linear_projection": False, "class_embed_type": None, "num_class_embeds": None, "upcast_attention": False, "resnet_time_scale_shift": "default", "projection_class_embeddings_input_dim": None, } unet.config = SimpleNamespace(**unet.config) controlnet = ControlNetModel.from_unet(unet) if args.controlnet_model_name_or_path: filename = args.controlnet_model_name_or_path if os.path.isfile(filename): if os.path.splitext(filename)[1] == ".safetensors": state_dict = load_file(filename) else: state_dict = torch.load(filename) state_dict = model_util.convert_controlnet_state_dict_to_diffusers(state_dict) controlnet.load_state_dict(state_dict) elif os.path.isdir(filename): controlnet = ControlNetModel.from_pretrained(filename) # モデルに xformers とか memory efficient attention を組み込む train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa) # 学習を準備する if cache_latents: vae.to(accelerator.device, dtype=weight_dtype) vae.requires_grad_(False) vae.eval() with torch.no_grad(): train_dataset_group.cache_latents( vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process, ) vae.to("cpu") clean_memory_on_device(accelerator.device) accelerator.wait_for_everyone() if args.gradient_checkpointing: controlnet.enable_gradient_checkpointing() # 学習に必要なクラスを準備する accelerator.print("prepare optimizer, data loader etc.") trainable_params = controlnet.parameters() _, _, optimizer = train_util.get_optimizer(args, trainable_params) # dataloaderを準備する # DataLoaderのプロセス数:0 は persistent_workers が使えないので注意 n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers train_dataloader = torch.utils.data.DataLoader( train_dataset_group, batch_size=1, shuffle=True, collate_fn=collator, num_workers=n_workers, persistent_workers=args.persistent_data_loader_workers, ) # 学習ステップ数を計算する if args.max_train_epochs is not None: args.max_train_steps = args.max_train_epochs * math.ceil( len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps ) accelerator.print( f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}" ) # データセット側にも学習ステップを送信 train_dataset_group.set_max_train_steps(args.max_train_steps) # lr schedulerを用意する lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes) # 実験的機能:勾配も含めたfp16学習を行う モデル全体をfp16にする if args.full_fp16: assert ( args.mixed_precision == "fp16" ), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。" accelerator.print("enable full fp16 training.") controlnet.to(weight_dtype) # acceleratorがなんかよろしくやってくれるらしい controlnet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( controlnet, optimizer, train_dataloader, lr_scheduler ) unet.requires_grad_(False) text_encoder.requires_grad_(False) unet.to(accelerator.device) text_encoder.to(accelerator.device) # transform DDP after prepare controlnet = controlnet.module if isinstance(controlnet, DDP) else controlnet controlnet.train() if not cache_latents: vae.requires_grad_(False) vae.eval() vae.to(accelerator.device, dtype=weight_dtype) # 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする if args.full_fp16: train_util.patch_accelerator_for_fp16_training(accelerator) # resumeする train_util.resume_from_local_or_hf_if_specified(accelerator, args) # epoch数を計算する num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0): args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1 # 学習する # TODO: find a way to handle total batch size when there are multiple datasets accelerator.print("running training / 学習開始") accelerator.print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}") accelerator.print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}") accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") accelerator.print(f" num epochs / epoch数: {num_train_epochs}") accelerator.print( f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}" ) # logger.info(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}") accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") progress_bar = tqdm( range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps", ) global_step = 0 noise_scheduler = DDPMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False, ) if accelerator.is_main_process: init_kwargs = {} if args.wandb_run_name: init_kwargs["wandb"] = {"name": args.wandb_run_name} if args.log_tracker_config is not None: init_kwargs = toml.load(args.log_tracker_config) accelerator.init_trackers( "controlnet_train" if args.log_tracker_name is None else args.log_tracker_name, init_kwargs=init_kwargs ) loss_recorder = train_util.LossRecorder() del train_dataset_group # function for saving/removing def save_model(ckpt_name, model, force_sync_upload=False): os.makedirs(args.output_dir, exist_ok=True) ckpt_file = os.path.join(args.output_dir, ckpt_name) accelerator.print(f"\nsaving checkpoint: {ckpt_file}") state_dict = model_util.convert_controlnet_state_dict_to_sd(model.state_dict()) if save_dtype is not None: for key in list(state_dict.keys()): v = state_dict[key] v = v.detach().clone().to("cpu").to(save_dtype) state_dict[key] = v if os.path.splitext(ckpt_file)[1] == ".safetensors": from safetensors.torch import save_file save_file(state_dict, ckpt_file) else: torch.save(state_dict, ckpt_file) if args.huggingface_repo_id is not None: huggingface_util.upload(args, ckpt_file, "/" + ckpt_name, force_sync_upload=force_sync_upload) def remove_model(old_ckpt_name): old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name) if os.path.exists(old_ckpt_file): accelerator.print(f"removing old checkpoint: {old_ckpt_file}") os.remove(old_ckpt_file) # For --sample_at_first train_util.sample_images( accelerator, args, 0, global_step, accelerator.device, vae, tokenizer, text_encoder, unet, controlnet=controlnet ) # training loop for epoch in range(num_train_epochs): if is_main_process: accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}") current_epoch.value = epoch + 1 for step, batch in enumerate(train_dataloader): current_step.value = global_step with accelerator.accumulate(controlnet): with torch.no_grad(): if "latents" in batch and batch["latents"] is not None: latents = batch["latents"].to(accelerator.device).to(dtype=weight_dtype) else: # latentに変換 latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample() latents = latents * 0.18215 b_size = latents.shape[0] input_ids = batch["input_ids"].to(accelerator.device) encoder_hidden_states = train_util.get_hidden_states(args, input_ids, tokenizer, text_encoder, weight_dtype) # Sample noise that we'll add to the latents noise = torch.randn_like(latents, device=latents.device) if args.noise_offset: noise = apply_noise_offset(latents, noise, args.noise_offset, args.adaptive_noise_scale) elif args.multires_noise_iterations: noise = pyramid_noise_like( noise, latents.device, args.multires_noise_iterations, args.multires_noise_discount, ) # Sample a random timestep for each image timesteps, huber_c = train_util.get_timesteps_and_huber_c(args, 0, noise_scheduler.config.num_train_timesteps, noise_scheduler, b_size, latents.device) # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) controlnet_image = batch["conditioning_images"].to(dtype=weight_dtype) with accelerator.autocast(): down_block_res_samples, mid_block_res_sample = controlnet( noisy_latents, timesteps, encoder_hidden_states=encoder_hidden_states, controlnet_cond=controlnet_image, return_dict=False, ) # Predict the noise residual noise_pred = unet( noisy_latents, timesteps, encoder_hidden_states, down_block_additional_residuals=[sample.to(dtype=weight_dtype) for sample in down_block_res_samples], mid_block_additional_residual=mid_block_res_sample.to(dtype=weight_dtype), ).sample if args.v_parameterization: # v-parameterization training target = noise_scheduler.get_velocity(latents, noise, timesteps) else: target = noise loss = train_util.conditional_loss(noise_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c) loss = loss.mean([1, 2, 3]) loss_weights = batch["loss_weights"] # 各sampleごとのweight loss = loss * loss_weights if args.min_snr_gamma: loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma, args.v_parameterization) loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし accelerator.backward(loss) if accelerator.sync_gradients and args.max_grad_norm != 0.0: params_to_clip = controlnet.parameters() accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad(set_to_none=True) # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 train_util.sample_images( accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet, controlnet=controlnet, ) # 指定ステップごとにモデルを保存 if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0: accelerator.wait_for_everyone() if accelerator.is_main_process: ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, global_step) save_model( ckpt_name, accelerator.unwrap_model(controlnet), ) if args.save_state: train_util.save_and_remove_state_stepwise(args, accelerator, global_step) remove_step_no = train_util.get_remove_step_no(args, global_step) if remove_step_no is not None: remove_ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, remove_step_no) remove_model(remove_ckpt_name) current_loss = loss.detach().item() loss_recorder.add(epoch=epoch, step=step, loss=current_loss) avr_loss: float = loss_recorder.moving_average logs = {"avr_loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) if args.logging_dir is not None: logs = generate_step_logs(args, current_loss, avr_loss, lr_scheduler) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break if args.logging_dir is not None: logs = {"loss/epoch": loss_recorder.moving_average} accelerator.log(logs, step=epoch + 1) accelerator.wait_for_everyone() # 指定エポックごとにモデルを保存 if args.save_every_n_epochs is not None: saving = (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs if is_main_process and saving: ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, epoch + 1) save_model(ckpt_name, accelerator.unwrap_model(controlnet)) remove_epoch_no = train_util.get_remove_epoch_no(args, epoch + 1) if remove_epoch_no is not None: remove_ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, remove_epoch_no) remove_model(remove_ckpt_name) if args.save_state: train_util.save_and_remove_state_on_epoch_end(args, accelerator, epoch + 1) train_util.sample_images( accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet, controlnet=controlnet, ) # end of epoch if is_main_process: controlnet = accelerator.unwrap_model(controlnet) accelerator.end_training() if is_main_process and (args.save_state or args.save_state_on_train_end): train_util.save_state_on_train_end(args, accelerator) # del accelerator # この後メモリを使うのでこれは消す→printで使うので消さずにおく if is_main_process: ckpt_name = train_util.get_last_ckpt_name(args, "." + args.save_model_as) save_model(ckpt_name, controlnet, force_sync_upload=True) logger.info("model saved.") def setup_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser() add_logging_arguments(parser) train_util.add_sd_models_arguments(parser) train_util.add_dataset_arguments(parser, False, True, True) train_util.add_training_arguments(parser, False) deepspeed_utils.add_deepspeed_arguments(parser) train_util.add_optimizer_arguments(parser) config_util.add_config_arguments(parser) custom_train_functions.add_custom_train_arguments(parser) parser.add_argument( "--save_model_as", type=str, default="safetensors", choices=[None, "ckpt", "pt", "safetensors"], help="format to save the model (default is .safetensors) / モデル保存時の形式(デフォルトはsafetensors)", ) parser.add_argument( "--controlnet_model_name_or_path", type=str, default=None, help="controlnet model name or path / controlnetのモデル名またはパス", ) parser.add_argument( "--conditioning_data_dir", type=str, default=None, help="conditioning data directory / 条件付けデータのディレクトリ", ) return parser if __name__ == "__main__": parser = setup_parser() args = parser.parse_args() train_util.verify_command_line_training_args(args) args = train_util.read_config_from_file(args, parser) train(args)