task_name: predict tags: - dev train: true test: true ckpt_path: null seed: 42 float32_matmul_precision: high clean_pred: true data: _target_: src.data.canopy_datamodule.GEODataModule geometry_path: ${paths.data_dir}canopy_height/geometries.geojson imageside: 336 imagesize: 224 mean: - 124 - 124 - 124 - 124 std: - 124 - 124 - 124 - 124 mean_type: global iinter: 1 batch_size: 64 pin_memory: true num_workers: 0 sample_multiplier: 1 tsize_base: null tsize_enum_sizes: - 1 tsize_enum_probs: - 1 tsize_range_frac: 0.5 tsize_range_sizes: - 0.5 - 2 trot_prob: 0.5 trot_angle: 90 min_overlap: 0.2 test_overlap: 0.5 model: _target_: src.models.regression_module.RegressionModule optimizer: _target_: torch.optim.Adam _partial_: true lr: 0.001 weight_decay: 0.0 scheduler: _target_: torch.optim.lr_scheduler.ReduceLROnPlateau _partial_: true mode: min factor: 0.5 patience: 1 threshold: 0.01 threshold_mode: rel metric_monitored: val/RMSE warmup_scheduler: _target_: src.models.components.utils.WarmupScheduler _partial_: true min_lr: 1.0e-05 max_lr: ${model.optimizer.lr} fract: 0.04 net: _target_: src.models.components.timmNet.timmNet img_size: ${data.imagesize} num_channels: 4 num_classes: 1 backbone: pvt_v2_b3.in1k pretrained: false pretrained_path: datasets/Models/pvt_v2_b3.in1k.bin segmentation_head: _partial_: true _target_: src.models.components.utils.SimpleSegmentationHead decoder_stride: 32 save_eval_only: true save_freq: 1000 test_overlap: ${data.test_overlap} compile: false num_classes: ${model.net.num_classes} aux_loss_factor: 0.0 loss: l1 activation: none callbacks: model_checkpoint: _target_: lightning.pytorch.callbacks.ModelCheckpoint dirpath: ${paths.output_dir}/checkpoints filename: epoch_{epoch:03d} monitor: val/RMSE verbose: false save_last: true save_top_k: 1 mode: min auto_insert_metric_name: false save_weights_only: false every_n_train_steps: null train_time_interval: null every_n_epochs: null save_on_train_epoch_end: null early_stopping: _target_: lightning.pytorch.callbacks.EarlyStopping monitor: ${callbacks.model_checkpoint.monitor} min_delta: 0.0 patience: 3 verbose: false mode: min strict: true check_finite: true stopping_threshold: null divergence_threshold: null check_on_train_epoch_end: null model_summary: _target_: lightning.pytorch.callbacks.RichModelSummary max_depth: -1 rich_progress_bar: _target_: lightning.pytorch.callbacks.RichProgressBar learning_rate_monitor: _target_: lightning.pytorch.callbacks.LearningRateMonitor logging_interval: step logger: null trainer: _target_: lightning.pytorch.trainer.Trainer default_root_dir: ${paths.output_dir} min_epochs: 10 max_epochs: 25 accelerator: gpu devices: 1 reload_dataloaders_every_n_epochs: 1 check_val_every_n_epoch: 1 log_every_n_steps: 20 deterministic: false paths: root_dir: ${oc.env:PROJECT_ROOT} data_dir: ${paths.root_dir}/datasets/ log_dir: ${paths.root_dir}/logs/ output_dir: ${hydra:runtime.output_dir} work_dir: ${hydra:runtime.cwd} extras: ignore_warnings: false enforce_tags: true print_config: true