Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-label-classification
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
File size: 8,606 Bytes
6dfa57d 5a64eb8 6dfa57d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The ECtHR Cases dataset is designed for experimentation of neural judgment prediction and rationale extraction considering ECtHR cases."""
import json
import os
import datasets
_CITATION = """\
@InProceedings{chalkidis-et-al-2021-ecthr,
title = "Paragraph-level Rationale Extraction through Regularization: A case study on European Court of Human Rights Cases",
author = "Chalkidis, Ilias and Fergadiotis, Manos and Tsarapatsanis, Dimitrios and Aletras, Nikolaos and Androutsopoulos, Ion and Malakasiotis, Prodromos",
booktitle = "Proceedings of the Annual Conference of the North American Chapter of the Association for Computational Linguistics",
year = "2021",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics"
}
"""
_DESCRIPTION = """\
The ECtHR Cases dataset is designed for experimentation of neural judgment prediction and rationale extraction considering ECtHR cases.
"""
_HOMEPAGE = "http://archive.org/details/ECtHR-NAACL2021/"
_LICENSE = "CC BY-NC-SA (Creative Commons / Attribution-NonCommercial-ShareAlike)"
_URLs = {
"alleged-violation-prediction": "http://archive.org/download/ECtHR-NAACL2021/dataset.zip",
"violation-prediction": "http://archive.org/download/ECtHR-NAACL2021/dataset.zip",
}
ARTICLES = {
"2": "Right to life",
"3": "Prohibition of torture",
"4": "Prohibition of slavery and forced labour",
"5": "Right to liberty and security",
"6": "Right to a fair trial",
"7": "No punishment without law",
"8": "Right to respect for private and family life",
"9": "Freedom of thought, conscience and religion",
"10": "Freedom of expression",
"11": "Freedom of assembly and association",
"12": "Right to marry",
"13": "Right to an effective remedy",
"14": "Prohibition of discrimination",
"15": "Derogation in time of emergency",
"16": "Restrictions on political activity of aliens",
"17": "Prohibition of abuse of rights",
"18": "Limitation on use of restrictions on rights",
"34": "Individual applications",
"38": "Examination of the case",
"39": "Friendly settlements",
"46": "Binding force and execution of judgments",
"P1-1": "Protection of property",
"P1-2": "Right to education",
"P1-3": "Right to free elections",
"P3-1": "Right to free elections",
"P4-1": "Prohibition of imprisonment for debt",
"P4-2": "Freedom of movement",
"P4-3": "Prohibition of expulsion of nationals",
"P4-4": "Prohibition of collective expulsion of aliens",
"P6-1": "Abolition of the death penalty",
"P6-2": "Death penalty in time of war",
"P6-3": "Prohibition of derogations",
"P7-1": "Procedural safeguards relating to expulsion of aliens",
"P7-2": "Right of appeal in criminal matters",
"P7-3": "Compensation for wrongful conviction",
"P7-4": "Right not to be tried or punished twice",
"P7-5": "Equality between spouses",
"P12-1": "General prohibition of discrimination",
"P13-1": "Abolition of the death penalty",
"P13-2": "Prohibition of derogations",
"P13-3": "Prohibition of reservations",
}
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class EcthrCases(datasets.GeneratorBasedBuilder):
"""The ECtHR Cases dataset is designed for experimentation of neural judgment prediction and rationale extraction considering ECtHR cases."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="alleged-violation-prediction",
version=VERSION,
description="This part of the dataset covers alleged violation prediction",
),
datasets.BuilderConfig(
name="violation-prediction",
version=VERSION,
description="This part of the dataset covers violation prediction",
),
]
DEFAULT_CONFIG_NAME = "alleged-violation-prediction"
def _info(self):
if self.config.name == "alleged-violation-prediction":
features = datasets.Features(
{
"facts": datasets.features.Sequence(datasets.Value("string")),
"labels": datasets.features.Sequence(datasets.Value("string")),
"silver_rationales": datasets.features.Sequence(datasets.Value("int32")),
"gold_rationales": datasets.features.Sequence(datasets.Value("int32"))
# These are the features of your dataset like images, labels ...
}
)
else:
features = datasets.Features(
{
"facts": datasets.features.Sequence(datasets.Value("string")),
"labels": datasets.features.Sequence(datasets.Value("string")),
"silver_rationales": datasets.features.Sequence(datasets.Value("int32"))
# These are the features of your dataset like images, labels ...
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
my_urls = _URLs[self.config.name]
data_dir = dl_manager.download_and_extract(my_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "train.jsonl"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, "test.jsonl"), "split": "test"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "dev.jsonl"),
"split": "dev",
},
),
]
def _generate_examples(
self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
):
"""Yields examples as (key, example) tuples."""
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
if self.config.name == "alleged-violation-prediction":
yield id_, {
"facts": data["facts"],
"labels": data["allegedly_violated_articles"],
"silver_rationales": data["silver_rationales"],
"gold_rationales": data["gold_rationales"],
}
else:
yield id_, {
"facts": data["facts"],
"labels": data["violated_articles"],
"silver_rationales": data["silver_rationales"],
}
|