AdaptLLM commited on
Commit
245049a
β€’
1 Parent(s): 418f6db

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -2
README.md CHANGED
@@ -102,10 +102,11 @@ This repo contains the **Biomedicine Knowledge Probing dataset** used in our **I
102
 
103
  We explore **continued pre-training on domain-specific corpora** for large language models. While this approach enriches LLMs with domain knowledge, it significantly hurts their prompting ability for question answering. Inspired by human learning via reading comprehension, we propose a simple method to **transform large-scale pre-training corpora into reading comprehension texts**, consistently improving prompting performance across tasks in biomedicine, finance, and law domains. **Our 7B model competes with much larger domain-specific models like BloombergGPT-50B**.
104
 
105
- ### πŸ€— We are currently working hard on developing models across different domains, scales and architectures! Please stay tuned! πŸ€—
106
 
107
  **************************** **Updates** ****************************
108
- * 2024/4/14: Released the knowledge probing datasets at [med_knowledge_prob](https://huggingface.co/datasets/AdaptLLM/med_knowledge_prob) and [law_knowledge_prob](https://huggingface.co/datasets/AdaptLLM/law_knowledge_prob)
 
109
  * 2024/4/2: Released the raw data splits (train and test) of all the evaluation datasets
110
  * 2024/1/16: πŸŽ‰ Our [research paper](https://huggingface.co/papers/2309.09530) has been accepted by ICLR 2024!!!πŸŽ‰
111
  * 2023/12/19: Released our [13B base models](https://huggingface.co/AdaptLLM/law-LLM-13B) developed from LLaMA-1-13B.
 
102
 
103
  We explore **continued pre-training on domain-specific corpora** for large language models. While this approach enriches LLMs with domain knowledge, it significantly hurts their prompting ability for question answering. Inspired by human learning via reading comprehension, we propose a simple method to **transform large-scale pre-training corpora into reading comprehension texts**, consistently improving prompting performance across tasks in biomedicine, finance, and law domains. **Our 7B model competes with much larger domain-specific models like BloombergGPT-50B**.
104
 
105
+ ### πŸ€— [2024/6/21] We release the 2nd version of AdaptLLM at [Instruction-Pretrain](https://huggingface.co/instruction-pretrain), effective for both general pre-training from scratch and domain-adaptive continual pre-training!!! πŸ€—
106
 
107
  **************************** **Updates** ****************************
108
+ * 2024/6/21: πŸ‘πŸ» Released the 2nd version of AdaptLLM at [Instruction-Pretrain](https://huggingface.co/instruction-pretrain) πŸ‘πŸ»
109
+ 2024/4/14: Released the knowledge probing datasets at [med_knowledge_prob](https://huggingface.co/datasets/AdaptLLM/med_knowledge_prob) and [law_knowledge_prob](https://huggingface.co/datasets/AdaptLLM/law_knowledge_prob)
110
  * 2024/4/2: Released the raw data splits (train and test) of all the evaluation datasets
111
  * 2024/1/16: πŸŽ‰ Our [research paper](https://huggingface.co/papers/2309.09530) has been accepted by ICLR 2024!!!πŸŽ‰
112
  * 2023/12/19: Released our [13B base models](https://huggingface.co/AdaptLLM/law-LLM-13B) developed from LLaMA-1-13B.