AmelieSchreiber
commited on
Commit
•
4c40650
1
Parent(s):
889629e
Upload ptm_data_preprocessing.ipynb
Browse files- ptm_data_preprocessing.ipynb +633 -0
ptm_data_preprocessing.ipynb
ADDED
@@ -0,0 +1,633 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 47,
|
6 |
+
"id": "945a82aa-1398-422a-98df-b3db93973271",
|
7 |
+
"metadata": {
|
8 |
+
"tags": []
|
9 |
+
},
|
10 |
+
"outputs": [
|
11 |
+
{
|
12 |
+
"data": {
|
13 |
+
"text/html": [
|
14 |
+
"<div>\n",
|
15 |
+
"<style scoped>\n",
|
16 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
17 |
+
" vertical-align: middle;\n",
|
18 |
+
" }\n",
|
19 |
+
"\n",
|
20 |
+
" .dataframe tbody tr th {\n",
|
21 |
+
" vertical-align: top;\n",
|
22 |
+
" }\n",
|
23 |
+
"\n",
|
24 |
+
" .dataframe thead th {\n",
|
25 |
+
" text-align: right;\n",
|
26 |
+
" }\n",
|
27 |
+
"</style>\n",
|
28 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
29 |
+
" <thead>\n",
|
30 |
+
" <tr style=\"text-align: right;\">\n",
|
31 |
+
" <th></th>\n",
|
32 |
+
" <th>Entry</th>\n",
|
33 |
+
" <th>Protein families</th>\n",
|
34 |
+
" <th>Modified residue</th>\n",
|
35 |
+
" <th>Sequence</th>\n",
|
36 |
+
" </tr>\n",
|
37 |
+
" </thead>\n",
|
38 |
+
" <tbody>\n",
|
39 |
+
" <tr>\n",
|
40 |
+
" <th>0</th>\n",
|
41 |
+
" <td>A0A009GHC8</td>\n",
|
42 |
+
" <td>Precorrin methyltransferase family; Precorrin ...</td>\n",
|
43 |
+
" <td>MOD_RES 129; /note=\"Phosphoserine\"; /evidence=...</td>\n",
|
44 |
+
" <td>MDIFPISLKLQQQRCLIVGGGHIALRKATLLAKAGAIIDVVAPAIE...</td>\n",
|
45 |
+
" </tr>\n",
|
46 |
+
" <tr>\n",
|
47 |
+
" <th>1</th>\n",
|
48 |
+
" <td>A0A009HTZ2</td>\n",
|
49 |
+
" <td>Precorrin methyltransferase family; Precorrin ...</td>\n",
|
50 |
+
" <td>MOD_RES 129; /note=\"Phosphoserine\"; /evidence=...</td>\n",
|
51 |
+
" <td>MDIFPISLKLQQQHCLIVGGGHIALRKANLLAKAGAVIDIIAPAIE...</td>\n",
|
52 |
+
" </tr>\n",
|
53 |
+
" <tr>\n",
|
54 |
+
" <th>2</th>\n",
|
55 |
+
" <td>A0A009IVE2</td>\n",
|
56 |
+
" <td>Precorrin methyltransferase family; Precorrin ...</td>\n",
|
57 |
+
" <td>MOD_RES 129; /note=\"Phosphoserine\"; /evidence=...</td>\n",
|
58 |
+
" <td>MDIFPISLKLQQQRCLIVGGGHIALRKATLLAKAGAIIDVVAPAIE...</td>\n",
|
59 |
+
" </tr>\n",
|
60 |
+
" <tr>\n",
|
61 |
+
" <th>3</th>\n",
|
62 |
+
" <td>A0A009MYL5</td>\n",
|
63 |
+
" <td>Precorrin methyltransferase family; Precorrin ...</td>\n",
|
64 |
+
" <td>MOD_RES 129; /note=\"Phosphoserine\"; /evidence=...</td>\n",
|
65 |
+
" <td>MDIFPISLKLQQQHCLIVGGGHIALRKANLLAKAGAVIDIIAPAIE...</td>\n",
|
66 |
+
" </tr>\n",
|
67 |
+
" <tr>\n",
|
68 |
+
" <th>4</th>\n",
|
69 |
+
" <td>A0A009PHM9</td>\n",
|
70 |
+
" <td>Precorrin methyltransferase family; Precorrin ...</td>\n",
|
71 |
+
" <td>MOD_RES 129; /note=\"Phosphoserine\"; /evidence=...</td>\n",
|
72 |
+
" <td>MDIFPISLKLQQQRCLIVGGGHIALRKATLLAKAGAIIDVVAPAIE...</td>\n",
|
73 |
+
" </tr>\n",
|
74 |
+
" </tbody>\n",
|
75 |
+
"</table>\n",
|
76 |
+
"</div>"
|
77 |
+
],
|
78 |
+
"text/plain": [
|
79 |
+
" Entry Protein families \\\n",
|
80 |
+
"0 A0A009GHC8 Precorrin methyltransferase family; Precorrin ... \n",
|
81 |
+
"1 A0A009HTZ2 Precorrin methyltransferase family; Precorrin ... \n",
|
82 |
+
"2 A0A009IVE2 Precorrin methyltransferase family; Precorrin ... \n",
|
83 |
+
"3 A0A009MYL5 Precorrin methyltransferase family; Precorrin ... \n",
|
84 |
+
"4 A0A009PHM9 Precorrin methyltransferase family; Precorrin ... \n",
|
85 |
+
"\n",
|
86 |
+
" Modified residue \\\n",
|
87 |
+
"0 MOD_RES 129; /note=\"Phosphoserine\"; /evidence=... \n",
|
88 |
+
"1 MOD_RES 129; /note=\"Phosphoserine\"; /evidence=... \n",
|
89 |
+
"2 MOD_RES 129; /note=\"Phosphoserine\"; /evidence=... \n",
|
90 |
+
"3 MOD_RES 129; /note=\"Phosphoserine\"; /evidence=... \n",
|
91 |
+
"4 MOD_RES 129; /note=\"Phosphoserine\"; /evidence=... \n",
|
92 |
+
"\n",
|
93 |
+
" Sequence \n",
|
94 |
+
"0 MDIFPISLKLQQQRCLIVGGGHIALRKATLLAKAGAIIDVVAPAIE... \n",
|
95 |
+
"1 MDIFPISLKLQQQHCLIVGGGHIALRKANLLAKAGAVIDIIAPAIE... \n",
|
96 |
+
"2 MDIFPISLKLQQQRCLIVGGGHIALRKATLLAKAGAIIDVVAPAIE... \n",
|
97 |
+
"3 MDIFPISLKLQQQHCLIVGGGHIALRKANLLAKAGAVIDIIAPAIE... \n",
|
98 |
+
"4 MDIFPISLKLQQQRCLIVGGGHIALRKATLLAKAGAIIDVVAPAIE... "
|
99 |
+
]
|
100 |
+
},
|
101 |
+
"execution_count": 47,
|
102 |
+
"metadata": {},
|
103 |
+
"output_type": "execute_result"
|
104 |
+
}
|
105 |
+
],
|
106 |
+
"source": [
|
107 |
+
"import pandas as pd\n",
|
108 |
+
"\n",
|
109 |
+
"# Load the TSV file\n",
|
110 |
+
"file_path = 'PTM/uniprotkb_family_AND_ft_mod_res_AND_pro_2023_10_02.tsv'\n",
|
111 |
+
"data = pd.read_csv(file_path, sep='\\t')\n",
|
112 |
+
"\n",
|
113 |
+
"# Display the first few rows of the data\n",
|
114 |
+
"data.head()\n"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"cell_type": "code",
|
119 |
+
"execution_count": 48,
|
120 |
+
"id": "a03f8ff8-0612-4f8c-bccd-49fde3dce0f5",
|
121 |
+
"metadata": {
|
122 |
+
"tags": []
|
123 |
+
},
|
124 |
+
"outputs": [
|
125 |
+
{
|
126 |
+
"data": {
|
127 |
+
"text/html": [
|
128 |
+
"<div>\n",
|
129 |
+
"<style scoped>\n",
|
130 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
131 |
+
" vertical-align: middle;\n",
|
132 |
+
" }\n",
|
133 |
+
"\n",
|
134 |
+
" .dataframe tbody tr th {\n",
|
135 |
+
" vertical-align: top;\n",
|
136 |
+
" }\n",
|
137 |
+
"\n",
|
138 |
+
" .dataframe thead th {\n",
|
139 |
+
" text-align: right;\n",
|
140 |
+
" }\n",
|
141 |
+
"</style>\n",
|
142 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
143 |
+
" <thead>\n",
|
144 |
+
" <tr style=\"text-align: right;\">\n",
|
145 |
+
" <th></th>\n",
|
146 |
+
" <th>Entry</th>\n",
|
147 |
+
" <th>Protein families</th>\n",
|
148 |
+
" <th>Modified residue</th>\n",
|
149 |
+
" <th>Sequence</th>\n",
|
150 |
+
" <th>PTM sites</th>\n",
|
151 |
+
" </tr>\n",
|
152 |
+
" </thead>\n",
|
153 |
+
" <tbody>\n",
|
154 |
+
" <tr>\n",
|
155 |
+
" <th>0</th>\n",
|
156 |
+
" <td>A0A009GHC8</td>\n",
|
157 |
+
" <td>Precorrin methyltransferase family; Precorrin ...</td>\n",
|
158 |
+
" <td>MOD_RES 129; /note=\"Phosphoserine\"; /evidence=...</td>\n",
|
159 |
+
" <td>MDIFPISLKLQQQRCLIVGGGHIALRKATLLAKAGAIIDVVAPAIE...</td>\n",
|
160 |
+
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
|
161 |
+
" </tr>\n",
|
162 |
+
" <tr>\n",
|
163 |
+
" <th>1</th>\n",
|
164 |
+
" <td>A0A009HTZ2</td>\n",
|
165 |
+
" <td>Precorrin methyltransferase family; Precorrin ...</td>\n",
|
166 |
+
" <td>MOD_RES 129; /note=\"Phosphoserine\"; /evidence=...</td>\n",
|
167 |
+
" <td>MDIFPISLKLQQQHCLIVGGGHIALRKANLLAKAGAVIDIIAPAIE...</td>\n",
|
168 |
+
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
|
169 |
+
" </tr>\n",
|
170 |
+
" <tr>\n",
|
171 |
+
" <th>2</th>\n",
|
172 |
+
" <td>A0A009IVE2</td>\n",
|
173 |
+
" <td>Precorrin methyltransferase family; Precorrin ...</td>\n",
|
174 |
+
" <td>MOD_RES 129; /note=\"Phosphoserine\"; /evidence=...</td>\n",
|
175 |
+
" <td>MDIFPISLKLQQQRCLIVGGGHIALRKATLLAKAGAIIDVVAPAIE...</td>\n",
|
176 |
+
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
|
177 |
+
" </tr>\n",
|
178 |
+
" <tr>\n",
|
179 |
+
" <th>3</th>\n",
|
180 |
+
" <td>A0A009MYL5</td>\n",
|
181 |
+
" <td>Precorrin methyltransferase family; Precorrin ...</td>\n",
|
182 |
+
" <td>MOD_RES 129; /note=\"Phosphoserine\"; /evidence=...</td>\n",
|
183 |
+
" <td>MDIFPISLKLQQQHCLIVGGGHIALRKANLLAKAGAVIDIIAPAIE...</td>\n",
|
184 |
+
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
|
185 |
+
" </tr>\n",
|
186 |
+
" <tr>\n",
|
187 |
+
" <th>4</th>\n",
|
188 |
+
" <td>A0A009PHM9</td>\n",
|
189 |
+
" <td>Precorrin methyltransferase family; Precorrin ...</td>\n",
|
190 |
+
" <td>MOD_RES 129; /note=\"Phosphoserine\"; /evidence=...</td>\n",
|
191 |
+
" <td>MDIFPISLKLQQQRCLIVGGGHIALRKATLLAKAGAIIDVVAPAIE...</td>\n",
|
192 |
+
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
|
193 |
+
" </tr>\n",
|
194 |
+
" </tbody>\n",
|
195 |
+
"</table>\n",
|
196 |
+
"</div>"
|
197 |
+
],
|
198 |
+
"text/plain": [
|
199 |
+
" Entry Protein families \\\n",
|
200 |
+
"0 A0A009GHC8 Precorrin methyltransferase family; Precorrin ... \n",
|
201 |
+
"1 A0A009HTZ2 Precorrin methyltransferase family; Precorrin ... \n",
|
202 |
+
"2 A0A009IVE2 Precorrin methyltransferase family; Precorrin ... \n",
|
203 |
+
"3 A0A009MYL5 Precorrin methyltransferase family; Precorrin ... \n",
|
204 |
+
"4 A0A009PHM9 Precorrin methyltransferase family; Precorrin ... \n",
|
205 |
+
"\n",
|
206 |
+
" Modified residue \\\n",
|
207 |
+
"0 MOD_RES 129; /note=\"Phosphoserine\"; /evidence=... \n",
|
208 |
+
"1 MOD_RES 129; /note=\"Phosphoserine\"; /evidence=... \n",
|
209 |
+
"2 MOD_RES 129; /note=\"Phosphoserine\"; /evidence=... \n",
|
210 |
+
"3 MOD_RES 129; /note=\"Phosphoserine\"; /evidence=... \n",
|
211 |
+
"4 MOD_RES 129; /note=\"Phosphoserine\"; /evidence=... \n",
|
212 |
+
"\n",
|
213 |
+
" Sequence \\\n",
|
214 |
+
"0 MDIFPISLKLQQQRCLIVGGGHIALRKATLLAKAGAIIDVVAPAIE... \n",
|
215 |
+
"1 MDIFPISLKLQQQHCLIVGGGHIALRKANLLAKAGAVIDIIAPAIE... \n",
|
216 |
+
"2 MDIFPISLKLQQQRCLIVGGGHIALRKATLLAKAGAIIDVVAPAIE... \n",
|
217 |
+
"3 MDIFPISLKLQQQHCLIVGGGHIALRKANLLAKAGAVIDIIAPAIE... \n",
|
218 |
+
"4 MDIFPISLKLQQQRCLIVGGGHIALRKATLLAKAGAIIDVVAPAIE... \n",
|
219 |
+
"\n",
|
220 |
+
" PTM sites \n",
|
221 |
+
"0 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
|
222 |
+
"1 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
|
223 |
+
"2 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
|
224 |
+
"3 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
|
225 |
+
"4 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... "
|
226 |
+
]
|
227 |
+
},
|
228 |
+
"execution_count": 48,
|
229 |
+
"metadata": {},
|
230 |
+
"output_type": "execute_result"
|
231 |
+
}
|
232 |
+
],
|
233 |
+
"source": [
|
234 |
+
"import re\n",
|
235 |
+
"\n",
|
236 |
+
"def get_ptm_sites(row):\n",
|
237 |
+
" # Extract the positions of modified residues from the 'Modified residue' column\n",
|
238 |
+
" modified_positions = [int(i) for i in re.findall(r'MOD_RES (\\d+)', row['Modified residue'])]\n",
|
239 |
+
" \n",
|
240 |
+
" # Create a list of zeros of length equal to the protein sequence\n",
|
241 |
+
" ptm_sites = [0] * len(row['Sequence'])\n",
|
242 |
+
" \n",
|
243 |
+
" # Replace the zeros with ones at the positions of modified residues\n",
|
244 |
+
" for position in modified_positions:\n",
|
245 |
+
" # Subtracting 1 because positions are 1-indexed, but lists are 0-indexed\n",
|
246 |
+
" ptm_sites[position - 1] = 1\n",
|
247 |
+
" \n",
|
248 |
+
" return ptm_sites\n",
|
249 |
+
"\n",
|
250 |
+
"# Apply the function to each row in the DataFrame\n",
|
251 |
+
"data['PTM sites'] = data.apply(get_ptm_sites, axis=1)\n",
|
252 |
+
"\n",
|
253 |
+
"# Display the first few rows of the updated DataFrame\n",
|
254 |
+
"data.head()\n"
|
255 |
+
]
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"cell_type": "code",
|
259 |
+
"execution_count": 50,
|
260 |
+
"id": "5d2e5043-e2f9-44ec-899b-7dad4f83f823",
|
261 |
+
"metadata": {
|
262 |
+
"tags": []
|
263 |
+
},
|
264 |
+
"outputs": [
|
265 |
+
{
|
266 |
+
"data": {
|
267 |
+
"text/html": [
|
268 |
+
"<div>\n",
|
269 |
+
"<style scoped>\n",
|
270 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
271 |
+
" vertical-align: middle;\n",
|
272 |
+
" }\n",
|
273 |
+
"\n",
|
274 |
+
" .dataframe tbody tr th {\n",
|
275 |
+
" vertical-align: top;\n",
|
276 |
+
" }\n",
|
277 |
+
"\n",
|
278 |
+
" .dataframe thead th {\n",
|
279 |
+
" text-align: right;\n",
|
280 |
+
" }\n",
|
281 |
+
"</style>\n",
|
282 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
283 |
+
" <thead>\n",
|
284 |
+
" <tr style=\"text-align: right;\">\n",
|
285 |
+
" <th></th>\n",
|
286 |
+
" <th>Entry</th>\n",
|
287 |
+
" <th>Protein families</th>\n",
|
288 |
+
" <th>Modified residue</th>\n",
|
289 |
+
" <th>Sequence</th>\n",
|
290 |
+
" <th>PTM sites</th>\n",
|
291 |
+
" </tr>\n",
|
292 |
+
" </thead>\n",
|
293 |
+
" <tbody>\n",
|
294 |
+
" <tr>\n",
|
295 |
+
" <th>0</th>\n",
|
296 |
+
" <td>A0A009GHC8</td>\n",
|
297 |
+
" <td>Precorrin methyltransferase family; Precorrin ...</td>\n",
|
298 |
+
" <td>MOD_RES 129; /note=\"Phosphoserine\"; /evidence=...</td>\n",
|
299 |
+
" <td>MDIFPISLKLQQQRCLIVGGGHIALRKATLLAKAGAIIDVVAPAIE...</td>\n",
|
300 |
+
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
|
301 |
+
" </tr>\n",
|
302 |
+
" <tr>\n",
|
303 |
+
" <th>1</th>\n",
|
304 |
+
" <td>A0A009HTZ2</td>\n",
|
305 |
+
" <td>Precorrin methyltransferase family; Precorrin ...</td>\n",
|
306 |
+
" <td>MOD_RES 129; /note=\"Phosphoserine\"; /evidence=...</td>\n",
|
307 |
+
" <td>MDIFPISLKLQQQHCLIVGGGHIALRKANLLAKAGAVIDIIAPAIE...</td>\n",
|
308 |
+
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
|
309 |
+
" </tr>\n",
|
310 |
+
" <tr>\n",
|
311 |
+
" <th>2</th>\n",
|
312 |
+
" <td>A0A009IVE2</td>\n",
|
313 |
+
" <td>Precorrin methyltransferase family; Precorrin ...</td>\n",
|
314 |
+
" <td>MOD_RES 129; /note=\"Phosphoserine\"; /evidence=...</td>\n",
|
315 |
+
" <td>MDIFPISLKLQQQRCLIVGGGHIALRKATLLAKAGAIIDVVAPAIE...</td>\n",
|
316 |
+
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
|
317 |
+
" </tr>\n",
|
318 |
+
" <tr>\n",
|
319 |
+
" <th>3</th>\n",
|
320 |
+
" <td>A0A009MYL5</td>\n",
|
321 |
+
" <td>Precorrin methyltransferase family; Precorrin ...</td>\n",
|
322 |
+
" <td>MOD_RES 129; /note=\"Phosphoserine\"; /evidence=...</td>\n",
|
323 |
+
" <td>MDIFPISLKLQQQHCLIVGGGHIALRKANLLAKAGAVIDIIAPAIE...</td>\n",
|
324 |
+
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
|
325 |
+
" </tr>\n",
|
326 |
+
" <tr>\n",
|
327 |
+
" <th>4</th>\n",
|
328 |
+
" <td>A0A009PHM9</td>\n",
|
329 |
+
" <td>Precorrin methyltransferase family; Precorrin ...</td>\n",
|
330 |
+
" <td>MOD_RES 129; /note=\"Phosphoserine\"; /evidence=...</td>\n",
|
331 |
+
" <td>MDIFPISLKLQQQRCLIVGGGHIALRKATLLAKAGAIIDVVAPAIE...</td>\n",
|
332 |
+
" <td>[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...</td>\n",
|
333 |
+
" </tr>\n",
|
334 |
+
" </tbody>\n",
|
335 |
+
"</table>\n",
|
336 |
+
"</div>"
|
337 |
+
],
|
338 |
+
"text/plain": [
|
339 |
+
" Entry Protein families \\\n",
|
340 |
+
"0 A0A009GHC8 Precorrin methyltransferase family; Precorrin ... \n",
|
341 |
+
"1 A0A009HTZ2 Precorrin methyltransferase family; Precorrin ... \n",
|
342 |
+
"2 A0A009IVE2 Precorrin methyltransferase family; Precorrin ... \n",
|
343 |
+
"3 A0A009MYL5 Precorrin methyltransferase family; Precorrin ... \n",
|
344 |
+
"4 A0A009PHM9 Precorrin methyltransferase family; Precorrin ... \n",
|
345 |
+
"\n",
|
346 |
+
" Modified residue \\\n",
|
347 |
+
"0 MOD_RES 129; /note=\"Phosphoserine\"; /evidence=... \n",
|
348 |
+
"1 MOD_RES 129; /note=\"Phosphoserine\"; /evidence=... \n",
|
349 |
+
"2 MOD_RES 129; /note=\"Phosphoserine\"; /evidence=... \n",
|
350 |
+
"3 MOD_RES 129; /note=\"Phosphoserine\"; /evidence=... \n",
|
351 |
+
"4 MOD_RES 129; /note=\"Phosphoserine\"; /evidence=... \n",
|
352 |
+
"\n",
|
353 |
+
" Sequence \\\n",
|
354 |
+
"0 MDIFPISLKLQQQRCLIVGGGHIALRKATLLAKAGAIIDVVAPAIE... \n",
|
355 |
+
"1 MDIFPISLKLQQQHCLIVGGGHIALRKANLLAKAGAVIDIIAPAIE... \n",
|
356 |
+
"2 MDIFPISLKLQQQRCLIVGGGHIALRKATLLAKAGAIIDVVAPAIE... \n",
|
357 |
+
"3 MDIFPISLKLQQQHCLIVGGGHIALRKANLLAKAGAVIDIIAPAIE... \n",
|
358 |
+
"4 MDIFPISLKLQQQRCLIVGGGHIALRKATLLAKAGAIIDVVAPAIE... \n",
|
359 |
+
"\n",
|
360 |
+
" PTM sites \n",
|
361 |
+
"0 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
|
362 |
+
"1 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
|
363 |
+
"2 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
|
364 |
+
"3 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
|
365 |
+
"4 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... "
|
366 |
+
]
|
367 |
+
},
|
368 |
+
"execution_count": 50,
|
369 |
+
"metadata": {},
|
370 |
+
"output_type": "execute_result"
|
371 |
+
}
|
372 |
+
],
|
373 |
+
"source": [
|
374 |
+
"# Function to split sequences and PTM sites into chunks\n",
|
375 |
+
"def split_into_chunks(row):\n",
|
376 |
+
" sequence = row['Sequence']\n",
|
377 |
+
" ptm_sites = row['PTM sites']\n",
|
378 |
+
" chunk_size = 1000\n",
|
379 |
+
" \n",
|
380 |
+
" # Calculate the number of chunks\n",
|
381 |
+
" num_chunks = (len(sequence) + chunk_size - 1) // chunk_size\n",
|
382 |
+
" \n",
|
383 |
+
" # Split sequences and PTM sites into chunks\n",
|
384 |
+
" sequence_chunks = [sequence[i * chunk_size: (i + 1) * chunk_size] for i in range(num_chunks)]\n",
|
385 |
+
" ptm_sites_chunks = [ptm_sites[i * chunk_size: (i + 1) * chunk_size] for i in range(num_chunks)]\n",
|
386 |
+
" \n",
|
387 |
+
" # Create new rows for each chunk\n",
|
388 |
+
" rows = []\n",
|
389 |
+
" for i in range(num_chunks):\n",
|
390 |
+
" new_row = row.copy()\n",
|
391 |
+
" new_row['Sequence'] = sequence_chunks[i]\n",
|
392 |
+
" new_row['PTM sites'] = ptm_sites_chunks[i]\n",
|
393 |
+
" rows.append(new_row)\n",
|
394 |
+
" \n",
|
395 |
+
" return rows\n",
|
396 |
+
"\n",
|
397 |
+
"# Create a new DataFrame to store the chunks\n",
|
398 |
+
"chunks_data = []\n",
|
399 |
+
"\n",
|
400 |
+
"# Iterate through each row of the original DataFrame and split into chunks\n",
|
401 |
+
"for _, row in data.iterrows():\n",
|
402 |
+
" chunks_data.extend(split_into_chunks(row))\n",
|
403 |
+
"\n",
|
404 |
+
"# Convert the list of chunks into a DataFrame\n",
|
405 |
+
"chunks_df = pd.DataFrame(chunks_data)\n",
|
406 |
+
"\n",
|
407 |
+
"# Reset the index of the DataFrame\n",
|
408 |
+
"chunks_df.reset_index(drop=True, inplace=True)\n",
|
409 |
+
"\n",
|
410 |
+
"# Display the first few rows of the new DataFrame\n",
|
411 |
+
"chunks_df.head()\n"
|
412 |
+
]
|
413 |
+
},
|
414 |
+
{
|
415 |
+
"cell_type": "code",
|
416 |
+
"execution_count": 52,
|
417 |
+
"id": "0e36e5bb-8e57-45af-a9da-9171875a0b88",
|
418 |
+
"metadata": {
|
419 |
+
"tags": []
|
420 |
+
},
|
421 |
+
"outputs": [
|
422 |
+
{
|
423 |
+
"name": "stderr",
|
424 |
+
"output_type": "stream",
|
425 |
+
"text": [
|
426 |
+
"% Test Data: 21.17% | % Test Families: 15.15%: 15%|█▌ | 661/4364 [00:05<00:30, 120.20it/s]\n"
|
427 |
+
]
|
428 |
+
}
|
429 |
+
],
|
430 |
+
"source": [
|
431 |
+
"from tqdm import tqdm\n",
|
432 |
+
"import numpy as np\n",
|
433 |
+
"\n",
|
434 |
+
"# Function to split data into train and test based on families\n",
|
435 |
+
"def split_data(df):\n",
|
436 |
+
" # Get a unique list of protein families\n",
|
437 |
+
" unique_families = df['Protein families'].unique().tolist()\n",
|
438 |
+
" np.random.shuffle(unique_families) # Shuffle the list to randomize the order of families\n",
|
439 |
+
" \n",
|
440 |
+
" test_data = []\n",
|
441 |
+
" test_families = []\n",
|
442 |
+
" total_entries = len(df)\n",
|
443 |
+
" total_families = len(unique_families)\n",
|
444 |
+
" \n",
|
445 |
+
" # Set up tqdm progress bar\n",
|
446 |
+
" with tqdm(total=total_families) as pbar:\n",
|
447 |
+
" for family in unique_families:\n",
|
448 |
+
" # Separate out all proteins in the current family into the test data\n",
|
449 |
+
" family_data = df[df['Protein families'] == family]\n",
|
450 |
+
" test_data.append(family_data)\n",
|
451 |
+
" \n",
|
452 |
+
" # Update the list of test families\n",
|
453 |
+
" test_families.append(family)\n",
|
454 |
+
" \n",
|
455 |
+
" # Remove the current family data from the original DataFrame\n",
|
456 |
+
" df = df[df['Protein families'] != family]\n",
|
457 |
+
" \n",
|
458 |
+
" # Calculate the percentage of test data and the percentage of families in the test data\n",
|
459 |
+
" percent_test_data = sum(len(data) for data in test_data) / total_entries * 100\n",
|
460 |
+
" percent_test_families = len(test_families) / total_families * 100\n",
|
461 |
+
" \n",
|
462 |
+
" # Update tqdm progress bar with readout of percentages\n",
|
463 |
+
" pbar.set_description(f'% Test Data: {percent_test_data:.2f}% | % Test Families: {percent_test_families:.2f}%')\n",
|
464 |
+
" pbar.update(1)\n",
|
465 |
+
" \n",
|
466 |
+
" # Check if the 20% threshold for test data is crossed\n",
|
467 |
+
" if percent_test_data >= 20:\n",
|
468 |
+
" break\n",
|
469 |
+
" \n",
|
470 |
+
" # Concatenate the list of test data DataFrames into a single DataFrame\n",
|
471 |
+
" test_df = pd.concat(test_data, ignore_index=True)\n",
|
472 |
+
" \n",
|
473 |
+
" return df, test_df # Return the remaining data and the test data\n",
|
474 |
+
"\n",
|
475 |
+
"# Split the data into train and test based on families\n",
|
476 |
+
"train_df, test_df = split_data(chunks_df)\n"
|
477 |
+
]
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"cell_type": "code",
|
481 |
+
"execution_count": 53,
|
482 |
+
"id": "0d5e7371-a6d0-4c5c-8587-dd0037f052f8",
|
483 |
+
"metadata": {
|
484 |
+
"tags": []
|
485 |
+
},
|
486 |
+
"outputs": [],
|
487 |
+
"source": [
|
488 |
+
"import pandas as pd\n",
|
489 |
+
"\n",
|
490 |
+
"# Assuming train_df and test_df are your dataframes\n",
|
491 |
+
"fraction = 0.105 # 10.5%\n",
|
492 |
+
"\n",
|
493 |
+
"# Randomly select 10.5% of the data\n",
|
494 |
+
"reduced_train_df = train_df.sample(frac=fraction, random_state=42)\n",
|
495 |
+
"reduced_test_df = test_df.sample(frac=fraction, random_state=42)\n",
|
496 |
+
"\n",
|
497 |
+
"# Split the reduced dataframes into sequences and PTM sites\n",
|
498 |
+
"#train_sequences = reduced_train_df['Sequence']\n",
|
499 |
+
"#train_ptm_sites = reduced_train_df['PTM sites']\n",
|
500 |
+
"#test_sequences = reduced_test_df['Sequence']\n",
|
501 |
+
"#test_ptm_sites = reduced_test_df['PTM sites']\n",
|
502 |
+
"\n",
|
503 |
+
"# Save the reduced data as pickle files\n",
|
504 |
+
"#train_sequences.to_pickle('train_sequences.pkl')\n",
|
505 |
+
"#train_ptm_sites.to_pickle('train_ptm_sites.pkl')\n",
|
506 |
+
"#test_sequences.to_pickle('test_sequences.pkl')\n",
|
507 |
+
"#test_ptm_sites.to_pickle('test_ptm_sites.pkl')\n"
|
508 |
+
]
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"cell_type": "code",
|
512 |
+
"execution_count": 55,
|
513 |
+
"id": "a5ac2515-2aaa-4417-b5bb-09b25ce31d44",
|
514 |
+
"metadata": {
|
515 |
+
"tags": []
|
516 |
+
},
|
517 |
+
"outputs": [
|
518 |
+
{
|
519 |
+
"data": {
|
520 |
+
"text/plain": [
|
521 |
+
"['50K_ptm_data/train_sequences_chunked_by_family.pkl',\n",
|
522 |
+
" '50K_ptm_data/test_sequences_chunked_by_family.pkl',\n",
|
523 |
+
" '50K_ptm_data/train_labels_chunked_by_family.pkl',\n",
|
524 |
+
" '50K_ptm_data/test_labels_chunked_by_family.pkl']"
|
525 |
+
]
|
526 |
+
},
|
527 |
+
"execution_count": 55,
|
528 |
+
"metadata": {},
|
529 |
+
"output_type": "execute_result"
|
530 |
+
}
|
531 |
+
],
|
532 |
+
"source": [
|
533 |
+
"import pickle \n",
|
534 |
+
"\n",
|
535 |
+
"# Extract sequences and PTM site labels from the reduced train and test DataFrames\n",
|
536 |
+
"train_sequences_reduced = reduced_train_df['Sequence'].tolist()\n",
|
537 |
+
"train_labels_reduced = reduced_train_df['PTM sites'].tolist()\n",
|
538 |
+
"test_sequences_reduced = reduced_test_df['Sequence'].tolist()\n",
|
539 |
+
"test_labels_reduced = reduced_test_df['PTM sites'].tolist()\n",
|
540 |
+
"\n",
|
541 |
+
"# Save the lists to the specified pickle files\n",
|
542 |
+
"pickle_file_path = \"50K_ptm_data/\"\n",
|
543 |
+
"\n",
|
544 |
+
"with open(pickle_file_path + \"train_sequences_chunked_by_family.pkl\", \"wb\") as f:\n",
|
545 |
+
" pickle.dump(train_sequences_reduced, f)\n",
|
546 |
+
"\n",
|
547 |
+
"with open(pickle_file_path + \"test_sequences_chunked_by_family.pkl\", \"wb\") as f:\n",
|
548 |
+
" pickle.dump(test_sequences_reduced, f)\n",
|
549 |
+
"\n",
|
550 |
+
"with open(pickle_file_path + \"train_labels_chunked_by_family.pkl\", \"wb\") as f:\n",
|
551 |
+
" pickle.dump(train_labels_reduced, f)\n",
|
552 |
+
"\n",
|
553 |
+
"with open(pickle_file_path + \"test_labels_chunked_by_family.pkl\", \"wb\") as f:\n",
|
554 |
+
" pickle.dump(test_labels_reduced, f)\n",
|
555 |
+
"\n",
|
556 |
+
"# Return the paths to the saved pickle files\n",
|
557 |
+
"saved_files = [\n",
|
558 |
+
" pickle_file_path + \"train_sequences_chunked_by_family.pkl\",\n",
|
559 |
+
" pickle_file_path + \"test_sequences_chunked_by_family.pkl\",\n",
|
560 |
+
" pickle_file_path + \"train_labels_chunked_by_family.pkl\",\n",
|
561 |
+
" pickle_file_path + \"test_labels_chunked_by_family.pkl\"\n",
|
562 |
+
"]\n",
|
563 |
+
"saved_files\n"
|
564 |
+
]
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"cell_type": "code",
|
568 |
+
"execution_count": 57,
|
569 |
+
"id": "5ec5c5fc-7e9a-4c2c-a954-b2d2ad168b11",
|
570 |
+
"metadata": {
|
571 |
+
"tags": []
|
572 |
+
},
|
573 |
+
"outputs": [
|
574 |
+
{
|
575 |
+
"name": "stdout",
|
576 |
+
"output_type": "stream",
|
577 |
+
"text": [
|
578 |
+
"{'50K_ptm_data/train_sequences_chunked_by_family.pkl': 5132, '50K_ptm_data/test_sequences_chunked_by_family.pkl': 1378, '50K_ptm_data/train_labels_chunked_by_family.pkl': 5132, '50K_ptm_data/test_labels_chunked_by_family.pkl': 1378}\n"
|
579 |
+
]
|
580 |
+
}
|
581 |
+
],
|
582 |
+
"source": [
|
583 |
+
"import pickle\n",
|
584 |
+
"\n",
|
585 |
+
"def get_number_of_rows(pickle_file):\n",
|
586 |
+
" with open(pickle_file, \"rb\") as f:\n",
|
587 |
+
" data = pickle.load(f)\n",
|
588 |
+
" return len(data)\n",
|
589 |
+
"\n",
|
590 |
+
"# Paths to the pickle files\n",
|
591 |
+
"files = [\n",
|
592 |
+
" \"50K_ptm_data/train_sequences_chunked_by_family.pkl\",\n",
|
593 |
+
" \"50K_ptm_data/test_sequences_chunked_by_family.pkl\",\n",
|
594 |
+
" \"50K_ptm_data/train_labels_chunked_by_family.pkl\",\n",
|
595 |
+
" \"50K_ptm_data/test_labels_chunked_by_family.pkl\"\n",
|
596 |
+
"]\n",
|
597 |
+
"\n",
|
598 |
+
"# Get the number of rows for each file\n",
|
599 |
+
"number_of_rows = {file: get_number_of_rows(file) for file in files}\n",
|
600 |
+
"print(number_of_rows)\n"
|
601 |
+
]
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"cell_type": "code",
|
605 |
+
"execution_count": null,
|
606 |
+
"id": "71cc9d3d-bb35-4e2a-a382-7218bff5cb53",
|
607 |
+
"metadata": {},
|
608 |
+
"outputs": [],
|
609 |
+
"source": []
|
610 |
+
}
|
611 |
+
],
|
612 |
+
"metadata": {
|
613 |
+
"kernelspec": {
|
614 |
+
"display_name": "esm2_binding_py38b",
|
615 |
+
"language": "python",
|
616 |
+
"name": "esm2_binding_py38b"
|
617 |
+
},
|
618 |
+
"language_info": {
|
619 |
+
"codemirror_mode": {
|
620 |
+
"name": "ipython",
|
621 |
+
"version": 3
|
622 |
+
},
|
623 |
+
"file_extension": ".py",
|
624 |
+
"mimetype": "text/x-python",
|
625 |
+
"name": "python",
|
626 |
+
"nbconvert_exporter": "python",
|
627 |
+
"pygments_lexer": "ipython3",
|
628 |
+
"version": "3.8.17"
|
629 |
+
}
|
630 |
+
},
|
631 |
+
"nbformat": 4,
|
632 |
+
"nbformat_minor": 5
|
633 |
+
}
|