|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
_CITATION = """\ |
|
|
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
|
|
""" |
|
_HOMEPAGE = "https://indicnlp.ai4bharat.org/" |
|
|
|
_LICENSE = "Creative Commons Attribution-NonCommercial 4.0 International Public License" |
|
|
|
_URL = "https://huggingface.co/datasets/ai4bharat/naamapadam/resolve/main/data/{}_IndicNER_v{}.zip" |
|
|
|
_LANGUAGES = ["as", "bn", "gu", "hi", "kn", "ml", "mr", "or", "pa", "ta", "te"] |
|
|
|
|
|
class Naamapadam(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="{}".format(lang), version=datasets.Version("1.0.0") |
|
) |
|
for lang in _LANGUAGES |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"O", |
|
"B-PER", |
|
"I-PER", |
|
"B-ORG", |
|
"I-ORG", |
|
"B-LOC", |
|
"I-LOC", |
|
] |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
version=self.VERSION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
lang = str(self.config.name) |
|
url = _URL.format(lang, self.VERSION.version_str[:-2]) |
|
|
|
data_dir = dl_manager.download_and_extract(url) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, lang + "_train.json"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, lang + "_test.json"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, lang + "_val.json"), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples as (key, example) tuples.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
for idx_, row in enumerate(f): |
|
data = json.loads(row) |
|
yield idx_, {"tokens": data["words"], "ner_tags": data["ner"]} |
|
|