Datasets:

Modalities:
Text
Formats:
csv
DOI:
Libraries:
Datasets
pandas
License:
File size: 2,826 Bytes
9b0a232
 
 
 
 
 
 
 
 
 
 
 
23ed875
9b0a232
23ed875
9b0a232
 
 
15b116d
 
9a4bf70
c81ad22
 
 
 
 
 
9209def
 
2aacee1
 
 
 
 
 
 
 
 
 
 
 
 
 
23ed875
2aacee1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c81ad22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
license: apache-2.0
language:
- ru
- hy
- es
- en
size_categories:
- 100K<n<1M
configs:
- config_name: default
  data_files:
  - split: collection
    path:
    - collection.csv
  - split: query
    path:
    - query.csv
tags:
- paraphrase
- crosslingual
---

# Cross-lingual plagiarism detection: Two are better than one

The widespread availability of scientific documents in multiple languages, coupled with the development of automatic translation and editing tools, has created a demand for efficient methods that can detect plagiarism across different languages.

A dataset for cross-lingual plagiarism evaluation. Collection consists of a subset of Wikipedia articles on 4 languages (ru, hy, es, en). Quary consists of wikipedia documents in each of the four languages with translated sentences with Google Translate API from collection, and also XML-markup for them.

# Usage of Dataset

## Load Data

```python
from datasets import load_dataset

ds = load_dataset("AntiplagiatCompany/CL4Lang")
```

## Create Index of collection

```python
# The list consists of dictionaries with document id, text of the document and text language information (also present xml data, but it used only for querys, not for indexing)
collection = ds['collection'].to_list()

# The list of object can be indexing by using different methods (vector search methods or classical BM25 indexing methods)
index = make_index(collection)
```

## Evaluate The Query Result

```python
# The list consists of dictionaries with document id, text of the document, text language information, and XML information about text reuses in query from collection.
queries = ds['query'].to_list()

real, predict = [], []
for query in queries:
    real.append(query['xml'])
    predict.append(
        convert_answer_to_xml(
            index.search(text=query['text'], lang=query['lang'])
        )
    )

# More information about the XML markup description and evaluation see http://pan.webis.de/clef13/pan13-web/plagiarism-detection.html
evaluate_system(real, predict)
```

# Citation

If you use that results in your research, please cite our paper:

```bibtex
@article{10.1134/S0361768823040138,
    author = {Avetisyan, K. and Gritsay, G. and Grabovoy, A.},
    title = {Cross-Lingual Plagiarism Detection: Two Are Better Than One},
    year = {2023},
    issue_date = {Aug 2023},
    publisher = {Plenum Press},
    address = {USA},
    volume = {49},
    number = {4},
    issn = {0361-7688},
    url = {https://doi.org/10.1134/S0361768823040138},
    doi = {10.1134/S0361768823040138},
    journal = {Program. Comput. Softw.},
    month = aug,
    pages = {346–354},
    numpages = {9},
    keywords = {cross-lingual plagiarism detection, cross-lingual plagiarism detection benchmark, under-resourced languages, sequential merger approach}
}
```