File size: 42,057 Bytes
b14931b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
# ruff: noqa: F405, F403, F401
"""
Custom evaluation tasks for lighteval
Do note that we ran the evals with `max_samples=1000` to speed up large evals.
Most custom prompt changes were in an attempt to improve signal for small models in general.
This file generally creates just a TASKS_TABLE and TASKS_GROUPS which are then imported by LightEval.
Example usage (lighteval_tasks.py is the path to this file):
===================
accelerate launch --num_processes=1 lighteval/run_evals_accelerate.py --model_args="pretrained=HuggingFaceFW/ablation-model-fineweb-edu" \
--custom_tasks "lighteval_tasks.py" --output_dir [OUTPUTPATH] --max_samples 1000 \
--tasks "custom|hellaswag|0|1,custom|winogrande|0|1,custom|piqa|0|1,custom|siqa|0|1,custom|openbookqa|0|1,custom|arc:easy|0|1,custom|arc:challenge|0|1,custom|commonsense_qa|0|1,custom|mmlu:abstract_algebra|0|1,custom|mmlu:anatomy|0|1,custom|mmlu:astronomy|0|1,custom|mmlu:business_ethics|0|1,custom|mmlu:clinical_knowledge|0|1,custom|mmlu:college_biology|0|1,custom|mmlu:college_chemistry|0|1,custom|mmlu:college_computer_science|0|1,custom|mmlu:college_mathematics|0|1,custom|mmlu:college_medicine|0|1,custom|mmlu:college_physics|0|1,custom|mmlu:computer_security|0|1,custom|mmlu:conceptual_physics|0|1,custom|mmlu:econometrics|0|1,custom|mmlu:electrical_engineering|0|1,custom|mmlu:elementary_mathematics|0|1,custom|mmlu:formal_logic|0|1,custom|mmlu:global_facts|0|1,custom|mmlu:high_school_biology|0|1,custom|mmlu:high_school_chemistry|0|1,custom|mmlu:high_school_computer_science|0|1,custom|mmlu:high_school_european_history|0|1,custom|mmlu:high_school_geography|0|1,custom|mmlu:high_school_government_and_politics|0|1,custom|mmlu:high_school_macroeconomics|0|1,custom|mmlu:high_school_mathematics|0|1,custom|mmlu:high_school_microeconomics|0|1,custom|mmlu:high_school_physics|0|1,custom|mmlu:high_school_psychology|0|1,custom|mmlu:high_school_statistics|0|1,custom|mmlu:high_school_us_history|0|1,custom|mmlu:high_school_world_history|0|1,custom|mmlu:human_aging|0|1,custom|mmlu:human_sexuality|0|1,custom|mmlu:international_law|0|1,custom|mmlu:jurisprudence|0|1,custom|mmlu:logical_fallacies|0|1,custom|mmlu:machine_learning|0|1,custom|mmlu:management|0|1,custom|mmlu:marketing|0|1,custom|mmlu:medical_genetics|0|1,custom|mmlu:miscellaneous|0|1,custom|mmlu:moral_disputes|0|1,custom|mmlu:moral_scenarios|0|1,custom|mmlu:nutrition|0|1,custom|mmlu:philosophy|0|1,custom|mmlu:prehistory|0|1,custom|mmlu:professional_accounting|0|1,custom|mmlu:professional_law|0|1,custom|mmlu:professional_medicine|0|1,custom|mmlu:professional_psychology|0|1,custom|mmlu:public_relations|0|1,custom|mmlu:security_studies|0|1,custom|mmlu:sociology|0|1,custom|mmlu:us_foreign_policy|0|1,custom|mmlu:virology|0|1,custom|mmlu:world_religions|0|1"
===================
custom|cmmlu:agronomy|0|1,custom|cmmlu:anatomy|0|1,custom|cmmlu:ancient_chinese|0|1,custom|cmmlu:arts|0|1,custom|cmmlu:astronomy|0|1,custom|cmmlu:business_ethics|0|1,custom|cmmlu:chinese_civil_service_exam|0|1,custom|cmmlu:chinese_driving_rule|0|1,custom|cmmlu:chinese_food_culture|0|1,custom|cmmlu:chinese_foreign_policy|0|1,custom|cmmlu:chinese_history|0|1,custom|cmmlu:chinese_literature|0|1,custom|cmmlu:chinese_teacher_qualification|0|1,custom|cmmlu:clinical_knowledge|0|1,custom|cmmlu:college_actuarial_science|0|1,custom|cmmlu:college_education|0|1,custom|cmmlu:college_engineering_hydrology|0|1,custom|cmmlu:college_law|0|1,custom|cmmlu:college_mathematics|0|1,custom|cmmlu:college_medical_statistics|0|1,custom|cmmlu:college_medicine|0|1,custom|cmmlu:computer_science|0|1,custom|cmmlu:computer_security|0|1,custom|cmmlu:conceptual_physics|0|1,custom|cmmlu:construction_project_management|0|1,custom|cmmlu:economics|0|1,custom|cmmlu:education|0|1,custom|cmmlu:electrical_engineering|0|1,custom|cmmlu:elementary_chinese|0|1,custom|cmmlu:elementary_commonsense|0|1,custom|cmmlu:elementary_information_and_technology|0|1,custom|cmmlu:elementary_mathematics|0|1,custom|cmmlu:ethnology|0|1,custom|cmmlu:food_science|0|1,custom|cmmlu:genetics|0|1,custom|cmmlu:global_facts|0|1,custom|cmmlu:high_school_biology|0|1,custom|cmmlu:high_school_chemistry|0|1,custom|cmmlu:high_school_geography|0|1,custom|cmmlu:high_school_mathematics|0|1,custom|cmmlu:high_school_physics|0|1,custom|cmmlu:high_school_politics|0|1,custom|cmmlu:human_sexuality|0|1,custom|cmmlu:international_law|0|1,custom|cmmlu:journalism|0|1,custom|cmmlu:jurisprudence|0|1,custom|cmmlu:legal_and_moral_basis|0|1,custom|cmmlu:logical|0|1,custom|cmmlu:machine_learning|0|1,custom|cmmlu:management|0|1,custom|cmmlu:marketing|0|1,custom|cmmlu:marxist_theory|0|1,custom|cmmlu:modern_chinese|0|1,custom|cmmlu:nutrition|0|1,custom|cmmlu:philosophy|0|1,custom|cmmlu:professional_accounting|0|1,custom|cmmlu:professional_law|0|1,custom|cmmlu:professional_medicine|0|1,custom|cmmlu:professional_psychology|0|1,custom|cmmlu:public_relations|0|1,custom|cmmlu:security_study|0|1,custom|cmmlu:sociology|0|1,custom|cmmlu:sports_science|0|1,custom|cmmlu:traditional_chinese_medicine|0|1,custom|cmmlu:virology|0|1,custom|cmmlu:world_history|0|1,custom|cmmlu:world_religions|0|1
===================
custom|ceval:computer_network|0|1,custom|ceval:operating_system|0|1,custom|ceval:computer_architecture|0|1,custom|ceval:college_programming|0|1,custom|ceval:college_physics|0|1,custom|ceval:college_chemistry|0|1,custom|ceval:advanced_mathematics|0|1,custom|ceval:probability_and_statistics|0|1,custom|ceval:discrete_mathematics|0|1,custom|ceval:electrical_engineer|0|1,custom|ceval:metrology_engineer|0|1,custom|ceval:high_school_mathematics|0|1,custom|ceval:high_school_physics|0|1,custom|ceval:high_school_chemistry|0|1,custom|ceval:high_school_biology|0|1,custom|ceval:middle_school_mathematics|0|1,custom|ceval:middle_school_biology|0|1,custom|ceval:middle_school_physics|0|1,custom|ceval:middle_school_chemistry|0|1,custom|ceval:veterinary_medicine|0|1,custom|ceval:college_economics|0|1,custom|ceval:business_administration|0|1,custom|ceval:marxism|0|1,custom|ceval:mao_zedong_thought|0|1,custom|ceval:education_science|0|1,custom|ceval:teacher_qualification|0|1,custom|ceval:high_school_politics|0|1,custom|ceval:high_school_geography|0|1,custom|ceval:middle_school_politics|0|1,custom|ceval:middle_school_geography|0|1,custom|ceval:modern_chinese_history|0|1,custom|ceval:ideological_and_moral_cultivation|0|1,custom|ceval:logic|0|1,custom|ceval:law|0|1,custom|ceval:chinese_language_and_literature|0|1,custom|ceval:art_studies|0|1,custom|ceval:professional_tour_guide|0|1,custom|ceval:legal_professional|0|1,custom|ceval:high_school_chinese|0|1,custom|ceval:high_school_history|0|1,custom|ceval:middle_school_history|0|1,custom|ceval:civil_servant|0|1,custom|ceval:sports_science|0|1,custom|ceval:plant_protection|0|1,custom|ceval:basic_medicine|0|1,custom|ceval:clinical_medicine|0|1,custom|ceval:urban_and_rural_planner|0|1,custom|ceval:accountant|0|1,custom|ceval:fire_engineer|0|1,custom|ceval:environmental_impact_assessment_engineer|0|1,custom|ceval:tax_accountant|0|1,custom|ceval:physician|0|1
===================
More info here: https://github.com/huggingface/lighteval?tab=readme-ov-file#evaluate-a-model-on-extended-community-or-custom-tasks
For more info on differences between MMLU implementations: https://huggingface.co/blog/open-llm-leaderboard-mmlu#1001-flavors-of-mmlu
In particular, the default leaderboard MMLU implementation (which uses "A", "B", etc as answer targets) gives generally random results on small/non instruction tuned models.
Instead, we use the full MMLU answer as the target.
"""
import re
from typing import List, Tuple
from lighteval.metrics import Metrics
from lighteval.tasks.lighteval_task import LightevalTaskConfig
from lighteval.tasks.requests import Doc
from lighteval.tasks.tasks_prompt_formatting import LETTER_INDICES
_TASKS_STRINGS: List[Tuple[LightevalTaskConfig, str]] = []
_TASKS: List[LightevalTaskConfig] = []
## COMMON_SENSE_REASONING_TASKS ##
COMMON_SENSE_REASONING_TASKS = [
LightevalTaskConfig(
name="hellaswag",
prompt_function="hellaswag_prompt",
hf_repo="hellaswag",
hf_subset="default",
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
LightevalTaskConfig(
name="winogrande",
prompt_function="winogrande",
hf_repo="winogrande",
hf_subset="winogrande_xl",
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
LightevalTaskConfig(
name="piqa",
prompt_function="piqa_harness",
hf_repo="piqa",
hf_subset="plain_text",
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
LightevalTaskConfig(
name="siqa",
prompt_function="siqa_prompt",
hf_repo="lighteval/siqa",
hf_subset="default",
hf_avail_splits=["train", "validation"],
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
LightevalTaskConfig(
name="openbookqa",
prompt_function="openbookqa",
hf_repo="openbookqa",
hf_subset="main",
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
LightevalTaskConfig(
name="arc:easy",
prompt_function="arc",
hf_repo="ai2_arc",
hf_subset="ARC-Easy",
evaluation_splits=["test"],
generation_size=1,
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
LightevalTaskConfig(
name="arc:challenge",
prompt_function="arc",
hf_repo="ai2_arc",
hf_subset="ARC-Challenge",
evaluation_splits=["test"],
generation_size=1,
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
LightevalTaskConfig(
name="commonsense_qa",
prompt_function="commonsense_qa_prompt",
hf_repo="commonsense_qa",
hf_subset="default",
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
]
def commonsense_qa_prompt(line, task_name: str = None):
return Doc(
task_name=task_name,
query=line["question"],
choices=[f" {c}" for c in line["choices"]["text"]],
gold_index=LETTER_INDICES.index(line["answerKey"].strip()),
instruction="",
)
def siqa_prompt(line, task_name: str = None):
return Doc(
task_name=task_name,
query=line["context"] + " " + line["question"],
choices=[f" {c}" for c in [line["answerA"], line["answerB"], line["answerC"]]],
gold_index=int(line["label"]) - 1,
instruction="",
)
def hellaswag_prompt(line, task_name: str = None):
def preprocess(text):
"""Comes from AiHarness"""
# text = text.strip()
# NOTE: Brackets are artifacts of the WikiHow dataset portion of HellaSwag.
text = text.replace(" [title]", ". ")
text = re.sub("\\[.*?\\]", "", text)
text = text.replace(" ", " ")
return text
ctx = f"{line['ctx_a']} {line['ctx_b'].capitalize()} "
return Doc(
task_name=task_name,
query=preprocess(line["activity_label"] + ": " + ctx),
choices=[" " + preprocess(ending) for ending in line["endings"]],
gold_index=int(line["label"]) if line["label"] != "" else -1, # -1 for test
# "metric": "choices_loglikelihood",
)
# 0 short for common sense
COMMON_SENSE_REASONING_STRING = [(t, f"custom|{t.name}|0|1") for t in COMMON_SENSE_REASONING_TASKS]
_TASKS_STRINGS.extend(COMMON_SENSE_REASONING_STRING)
_TASKS += COMMON_SENSE_REASONING_TASKS
## MMLU ##
class CustomMMLUEvaluationTask(LightevalTaskConfig):
def __init__(
self,
name,
prompt_function="mmlu_prompt",
hf_repo="lighteval/mmlu",
hf_subset=None,
# metric=[Metrics.loglikelihood_acc_single_token],
metric=[Metrics.loglikelihood_acc, Metrics.loglikelihood_acc_norm_nospace],
hf_avail_splits=None,
evaluation_splits=["test"],
few_shots_split="dev",
few_shots_select=None,
suite=None,
generation_size=-1,
stop_sequence=None,
output_regex=None,
frozen=False,
):
super().__init__(
name=name,
prompt_function=prompt_function,
hf_repo=hf_repo,
hf_subset=hf_subset,
metric=metric,
hf_avail_splits=hf_avail_splits,
evaluation_splits=evaluation_splits,
few_shots_split=few_shots_split,
few_shots_select=few_shots_select,
suite=suite,
generation_size=generation_size,
stop_sequence=stop_sequence,
output_regex=output_regex,
frozen=frozen,
)
MMLU_TASKS = [
CustomMMLUEvaluationTask(name="mmlu:abstract_algebra", hf_subset="abstract_algebra"),
CustomMMLUEvaluationTask(name="mmlu:anatomy", hf_subset="anatomy"),
CustomMMLUEvaluationTask(name="mmlu:astronomy", hf_subset="astronomy"),
CustomMMLUEvaluationTask(name="mmlu:business_ethics", hf_subset="business_ethics"),
CustomMMLUEvaluationTask(name="mmlu:clinical_knowledge", hf_subset="clinical_knowledge"),
CustomMMLUEvaluationTask(name="mmlu:college_biology", hf_subset="college_biology"),
CustomMMLUEvaluationTask(name="mmlu:college_chemistry", hf_subset="college_chemistry"),
CustomMMLUEvaluationTask(name="mmlu:college_computer_science", hf_subset="college_computer_science"),
CustomMMLUEvaluationTask(name="mmlu:college_mathematics", hf_subset="college_mathematics"),
CustomMMLUEvaluationTask(name="mmlu:college_medicine", hf_subset="college_medicine"),
CustomMMLUEvaluationTask(name="mmlu:college_physics", hf_subset="college_physics"),
CustomMMLUEvaluationTask(name="mmlu:computer_security", hf_subset="computer_security"),
CustomMMLUEvaluationTask(name="mmlu:conceptual_physics", hf_subset="conceptual_physics"),
CustomMMLUEvaluationTask(name="mmlu:econometrics", hf_subset="econometrics"),
CustomMMLUEvaluationTask(name="mmlu:electrical_engineering", hf_subset="electrical_engineering"),
CustomMMLUEvaluationTask(name="mmlu:elementary_mathematics", hf_subset="elementary_mathematics"),
CustomMMLUEvaluationTask(name="mmlu:formal_logic", hf_subset="formal_logic"),
CustomMMLUEvaluationTask(name="mmlu:global_facts", hf_subset="global_facts"),
CustomMMLUEvaluationTask(name="mmlu:high_school_biology", hf_subset="high_school_biology"),
CustomMMLUEvaluationTask(name="mmlu:high_school_chemistry", hf_subset="high_school_chemistry"),
CustomMMLUEvaluationTask(name="mmlu:high_school_computer_science", hf_subset="high_school_computer_science"),
CustomMMLUEvaluationTask(name="mmlu:high_school_european_history", hf_subset="high_school_european_history"),
CustomMMLUEvaluationTask(name="mmlu:high_school_geography", hf_subset="high_school_geography"),
CustomMMLUEvaluationTask(
name="mmlu:high_school_government_and_politics", hf_subset="high_school_government_and_politics"
),
CustomMMLUEvaluationTask(name="mmlu:high_school_macroeconomics", hf_subset="high_school_macroeconomics"),
CustomMMLUEvaluationTask(name="mmlu:high_school_mathematics", hf_subset="high_school_mathematics"),
CustomMMLUEvaluationTask(name="mmlu:high_school_microeconomics", hf_subset="high_school_microeconomics"),
CustomMMLUEvaluationTask(name="mmlu:high_school_physics", hf_subset="high_school_physics"),
CustomMMLUEvaluationTask(name="mmlu:high_school_psychology", hf_subset="high_school_psychology"),
CustomMMLUEvaluationTask(name="mmlu:high_school_statistics", hf_subset="high_school_statistics"),
CustomMMLUEvaluationTask(name="mmlu:high_school_us_history", hf_subset="high_school_us_history"),
CustomMMLUEvaluationTask(name="mmlu:high_school_world_history", hf_subset="high_school_world_history"),
CustomMMLUEvaluationTask(name="mmlu:human_aging", hf_subset="human_aging"),
CustomMMLUEvaluationTask(name="mmlu:human_sexuality", hf_subset="human_sexuality"),
CustomMMLUEvaluationTask(name="mmlu:international_law", hf_subset="international_law"),
CustomMMLUEvaluationTask(name="mmlu:jurisprudence", hf_subset="jurisprudence"),
CustomMMLUEvaluationTask(name="mmlu:logical_fallacies", hf_subset="logical_fallacies"),
CustomMMLUEvaluationTask(name="mmlu:machine_learning", hf_subset="machine_learning"),
CustomMMLUEvaluationTask(name="mmlu:management", hf_subset="management"),
CustomMMLUEvaluationTask(name="mmlu:marketing", hf_subset="marketing"),
CustomMMLUEvaluationTask(name="mmlu:medical_genetics", hf_subset="medical_genetics"),
CustomMMLUEvaluationTask(name="mmlu:miscellaneous", hf_subset="miscellaneous"),
CustomMMLUEvaluationTask(name="mmlu:moral_disputes", hf_subset="moral_disputes"),
CustomMMLUEvaluationTask(name="mmlu:moral_scenarios", hf_subset="moral_scenarios"),
CustomMMLUEvaluationTask(name="mmlu:nutrition", hf_subset="nutrition"),
CustomMMLUEvaluationTask(name="mmlu:philosophy", hf_subset="philosophy"),
CustomMMLUEvaluationTask(name="mmlu:prehistory", hf_subset="prehistory"),
CustomMMLUEvaluationTask(name="mmlu:professional_accounting", hf_subset="professional_accounting"),
CustomMMLUEvaluationTask(name="mmlu:professional_law", hf_subset="professional_law"),
CustomMMLUEvaluationTask(name="mmlu:professional_medicine", hf_subset="professional_medicine"),
CustomMMLUEvaluationTask(name="mmlu:professional_psychology", hf_subset="professional_psychology"),
CustomMMLUEvaluationTask(name="mmlu:public_relations", hf_subset="public_relations"),
CustomMMLUEvaluationTask(name="mmlu:security_studies", hf_subset="security_studies"),
CustomMMLUEvaluationTask(name="mmlu:sociology", hf_subset="sociology"),
CustomMMLUEvaluationTask(name="mmlu:us_foreign_policy", hf_subset="us_foreign_policy"),
CustomMMLUEvaluationTask(name="mmlu:virology", hf_subset="virology"),
CustomMMLUEvaluationTask(name="mmlu:world_religions", hf_subset="world_religions"),
]
def mmlu_prompt(line, task_name: str = None):
"""MMLU prompt without letters"""
topic = line["subject"]
prompt = f"The following are questions about {topic.replace('_', ' ')}.\nQuestion: "
prompt += line["question"] + "\nAnswer:"
#print(f"mmlu_prompt={prompt}")
return Doc(
task_name=task_name,
query=prompt,
choices=[f" {c}" for c in line["choices"]],
gold_index=line["answer"],
instruction=f"The following are questions about {topic.replace('_', ' ')}.\n",
)
MMLU_STRING = [(t, f"custom|{t.name}|0|1") for t in MMLU_TASKS]
_TASKS_STRINGS.extend(MMLU_STRING)
_TASKS += MMLU_TASKS
############################################################################################################################################################
## CMMLU ##
class CustomCMMLUEvaluationTask(LightevalTaskConfig):
def __init__(
self,
name,
prompt_function="cmmlu_prompt",
hf_repo="ldwang/lighteval-cmmlu",
hf_subset=None,
# metric=[Metrics.loglikelihood_acc_single_token],
metric=[Metrics.loglikelihood_acc, Metrics.loglikelihood_acc_norm_nospace],
hf_avail_splits=None,
evaluation_splits=["test"],
few_shots_split="dev",
few_shots_select=None,
suite=None,
generation_size=-1,
stop_sequence=None,
output_regex=None,
frozen=False,
):
super().__init__(
name=name,
prompt_function=prompt_function,
hf_repo=hf_repo,
hf_subset=hf_subset,
metric=metric,
hf_avail_splits=hf_avail_splits,
evaluation_splits=evaluation_splits,
few_shots_split=few_shots_split,
few_shots_select=few_shots_select,
suite=suite,
generation_size=generation_size,
stop_sequence=stop_sequence,
output_regex=output_regex,
frozen=frozen,
trust_dataset=True,
)
CMMLU_TASKS = [
CustomCMMLUEvaluationTask(name="cmmlu:agronomy", hf_subset="agronomy"),
CustomCMMLUEvaluationTask(name="cmmlu:anatomy", hf_subset="anatomy"),
CustomCMMLUEvaluationTask(name="cmmlu:ancient_chinese", hf_subset="ancient_chinese"),
CustomCMMLUEvaluationTask(name="cmmlu:arts", hf_subset="arts"),
CustomCMMLUEvaluationTask(name="cmmlu:astronomy", hf_subset="astronomy"),
CustomCMMLUEvaluationTask(name="cmmlu:business_ethics", hf_subset="business_ethics"),
CustomCMMLUEvaluationTask(name="cmmlu:chinese_civil_service_exam", hf_subset="chinese_civil_service_exam"),
CustomCMMLUEvaluationTask(name="cmmlu:chinese_driving_rule", hf_subset="chinese_driving_rule"),
CustomCMMLUEvaluationTask(name="cmmlu:chinese_food_culture", hf_subset="chinese_food_culture"),
CustomCMMLUEvaluationTask(name="cmmlu:chinese_foreign_policy", hf_subset="chinese_foreign_policy"),
CustomCMMLUEvaluationTask(name="cmmlu:chinese_history", hf_subset="chinese_history"),
CustomCMMLUEvaluationTask(name="cmmlu:chinese_literature", hf_subset="chinese_literature"),
CustomCMMLUEvaluationTask(name="cmmlu:chinese_teacher_qualification", hf_subset="chinese_teacher_qualification"),
CustomCMMLUEvaluationTask(name="cmmlu:clinical_knowledge", hf_subset="clinical_knowledge"),
CustomCMMLUEvaluationTask(name="cmmlu:college_actuarial_science", hf_subset="college_actuarial_science"),
CustomCMMLUEvaluationTask(name="cmmlu:college_education", hf_subset="college_education"),
CustomCMMLUEvaluationTask(name="cmmlu:college_engineering_hydrology", hf_subset="college_engineering_hydrology"),
CustomCMMLUEvaluationTask(name="cmmlu:college_law", hf_subset="college_law"),
CustomCMMLUEvaluationTask(name="cmmlu:college_mathematics", hf_subset="college_mathematics"),
CustomCMMLUEvaluationTask(name="cmmlu:college_medical_statistics", hf_subset="college_medical_statistics"),
CustomCMMLUEvaluationTask(name="cmmlu:college_medicine", hf_subset="college_medicine"),
CustomCMMLUEvaluationTask(name="cmmlu:computer_science", hf_subset="computer_science"),
CustomCMMLUEvaluationTask(name="cmmlu:computer_security", hf_subset="computer_security"),
CustomCMMLUEvaluationTask(name="cmmlu:conceptual_physics", hf_subset="conceptual_physics"),
CustomCMMLUEvaluationTask(name="cmmlu:construction_project_management", hf_subset="construction_project_management"),
CustomCMMLUEvaluationTask(name="cmmlu:economics", hf_subset="economics"),
CustomCMMLUEvaluationTask(name="cmmlu:education", hf_subset="education"),
CustomCMMLUEvaluationTask(name="cmmlu:electrical_engineering", hf_subset="electrical_engineering"),
CustomCMMLUEvaluationTask(name="cmmlu:elementary_chinese", hf_subset="elementary_chinese"),
CustomCMMLUEvaluationTask(name="cmmlu:elementary_commonsense", hf_subset="elementary_commonsense"),
CustomCMMLUEvaluationTask(name="cmmlu:elementary_information_and_technology", hf_subset="elementary_information_and_technology"),
CustomCMMLUEvaluationTask(name="cmmlu:elementary_mathematics", hf_subset="elementary_mathematics"),
CustomCMMLUEvaluationTask(name="cmmlu:ethnology", hf_subset="ethnology"),
CustomCMMLUEvaluationTask(name="cmmlu:food_science", hf_subset="food_science"),
CustomCMMLUEvaluationTask(name="cmmlu:genetics", hf_subset="genetics"),
CustomCMMLUEvaluationTask(name="cmmlu:global_facts", hf_subset="global_facts"),
CustomCMMLUEvaluationTask(name="cmmlu:high_school_biology", hf_subset="high_school_biology"),
CustomCMMLUEvaluationTask(name="cmmlu:high_school_chemistry", hf_subset="high_school_chemistry"),
CustomCMMLUEvaluationTask(name="cmmlu:high_school_geography", hf_subset="high_school_geography"),
CustomCMMLUEvaluationTask(name="cmmlu:high_school_mathematics", hf_subset="high_school_mathematics"),
CustomCMMLUEvaluationTask(name="cmmlu:high_school_physics", hf_subset="high_school_physics"),
CustomCMMLUEvaluationTask(name="cmmlu:high_school_politics", hf_subset="high_school_politics"),
CustomCMMLUEvaluationTask(name="cmmlu:human_sexuality", hf_subset="human_sexuality"),
CustomCMMLUEvaluationTask(name="cmmlu:international_law", hf_subset="international_law"),
CustomCMMLUEvaluationTask(name="cmmlu:journalism", hf_subset="journalism"),
CustomCMMLUEvaluationTask(name="cmmlu:jurisprudence", hf_subset="jurisprudence"),
CustomCMMLUEvaluationTask(name="cmmlu:legal_and_moral_basis", hf_subset="legal_and_moral_basis"),
CustomCMMLUEvaluationTask(name="cmmlu:logical", hf_subset="logical"),
CustomCMMLUEvaluationTask(name="cmmlu:machine_learning", hf_subset="machine_learning"),
CustomCMMLUEvaluationTask(name="cmmlu:management", hf_subset="management"),
CustomCMMLUEvaluationTask(name="cmmlu:marketing", hf_subset="marketing"),
CustomCMMLUEvaluationTask(name="cmmlu:marxist_theory", hf_subset="marxist_theory"),
CustomCMMLUEvaluationTask(name="cmmlu:modern_chinese", hf_subset="modern_chinese"),
CustomCMMLUEvaluationTask(name="cmmlu:nutrition", hf_subset="nutrition"),
CustomCMMLUEvaluationTask(name="cmmlu:philosophy", hf_subset="philosophy"),
CustomCMMLUEvaluationTask(name="cmmlu:professional_accounting", hf_subset="professional_accounting"),
CustomCMMLUEvaluationTask(name="cmmlu:professional_law", hf_subset="professional_law"),
CustomCMMLUEvaluationTask(name="cmmlu:professional_medicine", hf_subset="professional_medicine"),
CustomCMMLUEvaluationTask(name="cmmlu:professional_psychology", hf_subset="professional_psychology"),
CustomCMMLUEvaluationTask(name="cmmlu:public_relations", hf_subset="public_relations"),
CustomCMMLUEvaluationTask(name="cmmlu:security_study", hf_subset="security_study"),
CustomCMMLUEvaluationTask(name="cmmlu:sociology", hf_subset="sociology"),
CustomCMMLUEvaluationTask(name="cmmlu:sports_science", hf_subset="sports_science"),
CustomCMMLUEvaluationTask(name="cmmlu:traditional_chinese_medicine", hf_subset="traditional_chinese_medicine"),
CustomCMMLUEvaluationTask(name="cmmlu:virology", hf_subset="virology"),
CustomCMMLUEvaluationTask(name="cmmlu:world_history", hf_subset="world_history"),
CustomCMMLUEvaluationTask(name="cmmlu:world_religions", hf_subset="world_religions"),
]
cmmlu_subject_mapping = {
'agronomy': '农学',
'anatomy': '解剖学',
'ancient_chinese': '古汉语',
'arts': '艺术学',
'astronomy': '天文学',
'business_ethics': '商业伦理',
'chinese_civil_service_exam': '中国公务员考试',
'chinese_driving_rule': '中国驾驶规则',
'chinese_food_culture': '中国饮食文化',
'chinese_foreign_policy': '中国外交政策',
'chinese_history': '中国历史',
'chinese_literature': '中国文学',
'chinese_teacher_qualification': '中国教师资格',
'clinical_knowledge': '临床知识',
'college_actuarial_science': '大学精算学',
'college_education': '大学教育学',
'college_engineering_hydrology': '大学工程水文学',
'college_law': '大学法律',
'college_mathematics': '大学数学',
'college_medical_statistics': '大学医学统计',
'college_medicine': '大学医学',
'computer_science': '计算机科学',
'computer_security': '计算机安全',
'conceptual_physics': '概念物理学',
'construction_project_management': '建设工程管理',
'economics': '经济学',
'education': '教育学',
'electrical_engineering': '电气工程',
'elementary_chinese': '小学语文',
'elementary_commonsense': '小学常识',
'elementary_information_and_technology': '小学信息技术',
'elementary_mathematics': '初等数学',
'ethnology': '民族学',
'food_science': '食品科学',
'genetics': '遗传学',
'global_facts': '全球事实',
'high_school_biology': '高中生物',
'high_school_chemistry': '高中化学',
'high_school_geography': '高中地理',
'high_school_mathematics': '高中数学',
'high_school_physics': '高中物理学',
'high_school_politics': '高中政治',
'human_sexuality': '人类性行为',
'international_law': '国际法学',
'journalism': '新闻学',
'jurisprudence': '法理学',
'legal_and_moral_basis': '法律与道德基础',
'logical': '逻辑学',
'machine_learning': '机器学习',
'management': '管理学',
'marketing': '市场营销',
'marxist_theory': '马克思主义理论',
'modern_chinese': '现代汉语',
'nutrition': '营养学',
'philosophy': '哲学',
'professional_accounting': '专业会计',
'professional_law': '专业法学',
'professional_medicine': '专业医学',
'professional_psychology': '专业心理学',
'public_relations': '公共关系',
'security_study': '安全研究',
'sociology': '社会学',
'sports_science': '体育学',
'traditional_chinese_medicine': '中医中药',
'virology': '病毒学',
'world_history': '世界历史',
'world_religions': '世界宗教'
}
def cmmlu_prompt(line, task_name: str = None):
# 以下是关于{_ch_name}的单项选择题,请直接给出正确答案的选项。\n题目:{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}
# 答案是: {{{answer}}}
"""CMMLU prompt without letters"""
topic = cmmlu_subject_mapping[line['subject']]
prompt = f"以下是关于{topic.replace('_', ' ')}的单项选择题,请直接给出正确答案的选项。\n题目:"
prompt += line["question"] + "\n答案是:"
#print(f"cmmlu_prompt={prompt}")
return Doc(
task_name=task_name,
query=prompt,
choices=[f" {c}" for c in line["choices"]],
gold_index=line["answer"],
instruction=None,
)
CMMLU_STRING = [(t, f"custom|{t.name}|0|1") for t in CMMLU_TASKS]
_TASKS_STRINGS.extend(CMMLU_STRING)
_TASKS += CMMLU_TASKS
print(f'{",".join([t[1] for t in CMMLU_STRING])}')
############################################################################################################################################################
## CEVAL ##
class CustomCEVALEvaluationTask(LightevalTaskConfig):
def __init__(
self,
name,
prompt_function="ceval_prompt",
hf_repo="ldwang/lighteval-ceval-exam",
hf_subset=None,
# metric=[Metrics.loglikelihood_acc_single_token],
metric=[Metrics.loglikelihood_acc, Metrics.loglikelihood_acc_norm_nospace],
hf_avail_splits=None,
evaluation_splits=["val"],
few_shots_split="dev",
few_shots_select=None,
suite=None,
generation_size=-1,
stop_sequence=None,
output_regex=None,
frozen=False,
):
super().__init__(
name=name,
prompt_function=prompt_function,
hf_repo=hf_repo,
hf_subset=hf_subset,
metric=metric,
hf_avail_splits=hf_avail_splits,
evaluation_splits=evaluation_splits,
few_shots_split=few_shots_split,
few_shots_select=few_shots_select,
suite=suite,
generation_size=generation_size,
stop_sequence=stop_sequence,
output_regex=output_regex,
frozen=frozen,
trust_dataset=True,
)
CEVAL_TASKS = [
CustomCEVALEvaluationTask(name="ceval:computer_network", hf_subset="computer_network"),
CustomCEVALEvaluationTask(name="ceval:operating_system", hf_subset="operating_system"),
CustomCEVALEvaluationTask(name="ceval:computer_architecture", hf_subset="computer_architecture"),
CustomCEVALEvaluationTask(name="ceval:college_programming", hf_subset="college_programming"),
CustomCEVALEvaluationTask(name="ceval:college_physics", hf_subset="college_physics"),
CustomCEVALEvaluationTask(name="ceval:college_chemistry", hf_subset="college_chemistry"),
CustomCEVALEvaluationTask(name="ceval:advanced_mathematics", hf_subset="advanced_mathematics"),
CustomCEVALEvaluationTask(name="ceval:probability_and_statistics", hf_subset="probability_and_statistics"),
CustomCEVALEvaluationTask(name="ceval:discrete_mathematics", hf_subset="discrete_mathematics"),
CustomCEVALEvaluationTask(name="ceval:electrical_engineer", hf_subset="electrical_engineer"),
CustomCEVALEvaluationTask(name="ceval:metrology_engineer", hf_subset="metrology_engineer"),
CustomCEVALEvaluationTask(name="ceval:high_school_mathematics", hf_subset="high_school_mathematics"),
CustomCEVALEvaluationTask(name="ceval:high_school_physics", hf_subset="high_school_physics"),
CustomCEVALEvaluationTask(name="ceval:high_school_chemistry", hf_subset="high_school_chemistry"),
CustomCEVALEvaluationTask(name="ceval:high_school_biology", hf_subset="high_school_biology"),
CustomCEVALEvaluationTask(name="ceval:middle_school_mathematics", hf_subset="middle_school_mathematics"),
CustomCEVALEvaluationTask(name="ceval:middle_school_biology", hf_subset="middle_school_biology"),
CustomCEVALEvaluationTask(name="ceval:middle_school_physics", hf_subset="middle_school_physics"),
CustomCEVALEvaluationTask(name="ceval:middle_school_chemistry", hf_subset="middle_school_chemistry"),
CustomCEVALEvaluationTask(name="ceval:veterinary_medicine", hf_subset="veterinary_medicine"),
CustomCEVALEvaluationTask(name="ceval:college_economics", hf_subset="college_economics"),
CustomCEVALEvaluationTask(name="ceval:business_administration", hf_subset="business_administration"),
CustomCEVALEvaluationTask(name="ceval:marxism", hf_subset="marxism"),
CustomCEVALEvaluationTask(name="ceval:mao_zedong_thought", hf_subset="mao_zedong_thought"),
CustomCEVALEvaluationTask(name="ceval:education_science", hf_subset="education_science"),
CustomCEVALEvaluationTask(name="ceval:teacher_qualification", hf_subset="teacher_qualification"),
CustomCEVALEvaluationTask(name="ceval:high_school_politics", hf_subset="high_school_politics"),
CustomCEVALEvaluationTask(name="ceval:high_school_geography", hf_subset="high_school_geography"),
CustomCEVALEvaluationTask(name="ceval:middle_school_politics", hf_subset="middle_school_politics"),
CustomCEVALEvaluationTask(name="ceval:middle_school_geography", hf_subset="middle_school_geography"),
CustomCEVALEvaluationTask(name="ceval:modern_chinese_history", hf_subset="modern_chinese_history"),
CustomCEVALEvaluationTask(name="ceval:ideological_and_moral_cultivation", hf_subset="ideological_and_moral_cultivation"),
CustomCEVALEvaluationTask(name="ceval:logic", hf_subset="logic"),
CustomCEVALEvaluationTask(name="ceval:law", hf_subset="law"),
CustomCEVALEvaluationTask(name="ceval:chinese_language_and_literature", hf_subset="chinese_language_and_literature"),
CustomCEVALEvaluationTask(name="ceval:art_studies", hf_subset="art_studies"),
CustomCEVALEvaluationTask(name="ceval:professional_tour_guide", hf_subset="professional_tour_guide"),
CustomCEVALEvaluationTask(name="ceval:legal_professional", hf_subset="legal_professional"),
CustomCEVALEvaluationTask(name="ceval:high_school_chinese", hf_subset="high_school_chinese"),
CustomCEVALEvaluationTask(name="ceval:high_school_history", hf_subset="high_school_history"),
CustomCEVALEvaluationTask(name="ceval:middle_school_history", hf_subset="middle_school_history"),
CustomCEVALEvaluationTask(name="ceval:civil_servant", hf_subset="civil_servant"),
CustomCEVALEvaluationTask(name="ceval:sports_science", hf_subset="sports_science"),
CustomCEVALEvaluationTask(name="ceval:plant_protection", hf_subset="plant_protection"),
CustomCEVALEvaluationTask(name="ceval:basic_medicine", hf_subset="basic_medicine"),
CustomCEVALEvaluationTask(name="ceval:clinical_medicine", hf_subset="clinical_medicine"),
CustomCEVALEvaluationTask(name="ceval:urban_and_rural_planner", hf_subset="urban_and_rural_planner"),
CustomCEVALEvaluationTask(name="ceval:accountant", hf_subset="accountant"),
CustomCEVALEvaluationTask(name="ceval:fire_engineer", hf_subset="fire_engineer"),
CustomCEVALEvaluationTask(name="ceval:environmental_impact_assessment_engineer", hf_subset="environmental_impact_assessment_engineer"),
CustomCEVALEvaluationTask(name="ceval:tax_accountant", hf_subset="tax_accountant"),
CustomCEVALEvaluationTask(name="ceval:physician", hf_subset="physician"),
]
ceval_subject_mapping = {
'computer_network': ['Computer Network', '计算机网络', 'STEM'],
'operating_system': ['Operating System', '操作系统', 'STEM'],
'computer_architecture': ['Computer Architecture', '计算机组成', 'STEM'],
'college_programming': ['College Programming', '大学编程', 'STEM'],
'college_physics': ['College Physics', '大学物理', 'STEM'],
'college_chemistry': ['College Chemistry', '大学化学', 'STEM'],
'advanced_mathematics': ['Advanced Mathematics', '高等数学', 'STEM'],
'probability_and_statistics': ['Probability and Statistics', '概率统计', 'STEM'],
'discrete_mathematics': ['Discrete Mathematics', '离散数学', 'STEM'],
'electrical_engineer': ['Electrical Engineer', '注册电气工程师', 'STEM'],
'metrology_engineer': ['Metrology Engineer', '注册计量师', 'STEM'],
'high_school_mathematics': ['High School Mathematics', '高中数学', 'STEM'],
'high_school_physics': ['High School Physics', '高中物理', 'STEM'],
'high_school_chemistry': ['High School Chemistry', '高中化学', 'STEM'],
'high_school_biology': ['High School Biology', '高中生物', 'STEM'],
'middle_school_mathematics': ['Middle School Mathematics', '初中数学', 'STEM'],
'middle_school_biology': ['Middle School Biology', '初中生物', 'STEM'],
'middle_school_physics': ['Middle School Physics', '初中物理', 'STEM'],
'middle_school_chemistry': ['Middle School Chemistry', '初中化学', 'STEM'],
'veterinary_medicine': ['Veterinary Medicine', '兽医学', 'STEM'],
'college_economics': ['College Economics', '大学经济学', 'Social Science'],
'business_administration': ['Business Administration', '工商管理', 'Social Science'],
'marxism': ['Marxism', '马克思主义基本原理', 'Social Science'],
'mao_zedong_thought': ['Mao Zedong Thought', '毛泽东思想和中国特色社会主义理论体系概论', 'Social Science'],
'education_science': ['Education Science', '教育学', 'Social Science'],
'teacher_qualification': ['Teacher Qualification', '教师资格', 'Social Science'],
'high_school_politics': ['High School Politics', '高中政治', 'Social Science'],
'high_school_geography': ['High School Geography', '高中地理', 'Social Science'],
'middle_school_politics': ['Middle School Politics', '初中政治', 'Social Science'],
'middle_school_geography': ['Middle School Geography', '初中地理', 'Social Science'],
'modern_chinese_history': ['Modern Chinese History', '近代史纲要', 'Humanities'],
'ideological_and_moral_cultivation': ['Ideological and Moral Cultivation', '思想道德修养与法律基础', 'Humanities'],
'logic': ['Logic', '逻辑学', 'Humanities'],
'law': ['Law', '法学', 'Humanities'],
'chinese_language_and_literature': ['Chinese Language and Literature', '中国语言文学', 'Humanities'],
'art_studies': ['Art Studies', '艺术学', 'Humanities'],
'professional_tour_guide': ['Professional Tour Guide', '导游资格', 'Humanities'],
'legal_professional': ['Legal Professional', '法律职业资格', 'Humanities'],
'high_school_chinese': ['High School Chinese', '高中语文', 'Humanities'],
'high_school_history': ['High School History', '高中历史', 'Humanities'],
'middle_school_history': ['Middle School History', '初中历史', 'Humanities'],
'civil_servant': ['Civil Servant', '公务员', 'Other'],
'sports_science': ['Sports Science', '体育学', 'Other'],
'plant_protection': ['Plant Protection', '植物保护', 'Other'],
'basic_medicine': ['Basic Medicine', '基础医学', 'Other'],
'clinical_medicine': ['Clinical Medicine', '临床医学', 'Other'],
'urban_and_rural_planner': ['Urban and Rural Planner', '注册城乡规划师', 'Other'],
'accountant': ['Accountant', '注册会计师', 'Other'],
'fire_engineer': ['Fire Engineer', '注册消防工程师', 'Other'],
'environmental_impact_assessment_engineer': ['Environmental Impact Assessment Engineer', '环境影响评价工程师', 'Other'],
'tax_accountant': ['Tax Accountant', '税务师', 'Other'],
'physician': ['Physician', '医师资格', 'Other'],
}
def ceval_prompt(line, task_name: str = None):
# f"以下是中国关于{_ch_name}考试的单项选择题,请选出其中的正确答案。\n{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案: "
"""CEVAL prompt without letters"""
topic = ceval_subject_mapping[line['subject']][1]
prompt = f"以下是中国关于{topic.replace('_', ' ')}考试的单项选择题,请选出其中的正确答案。\n题目:"
prompt += line["question"] + "\n答案:"
#print(f"ceval_prompt={prompt}")
return Doc(
task_name=task_name,
query=prompt,
choices=[f" {c}" for c in line["choices"]],
gold_index=line["answer"],
instruction=None,
)
CEVAL_STRING = [(t, f"custom|{t.name}|0|1") for t in CEVAL_TASKS]
_TASKS_STRINGS.extend(CEVAL_STRING)
_TASKS += CEVAL_TASKS
print(f'{",".join([t[1] for t in CEVAL_STRING])}')
############################################################################################################################################################
# common sense reasoning + mmlu
EARLY_SIGNAL_TASKS = ",".join([t[1] for t in COMMON_SENSE_REASONING_STRING] + [t[1] for t in MMLU_STRING] + [t[1] for t in CMMLU_STRING])
# Convert to dict for lighteval
TASKS_TABLE = [task.as_dict() for task in _TASKS]
# You can have a few pre-organised groups of tasks
TASKS_GROUPS = {
"early-signal": EARLY_SIGNAL_TASKS,
}
|