Datasets:
BAAI
/

Languages:
Chinese
ArXiv:
File size: 42,057 Bytes
b14931b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
# ruff: noqa: F405, F403, F401
"""
Custom evaluation tasks for lighteval

Do note that we ran the evals with `max_samples=1000` to speed up large evals.
Most custom prompt changes were in an attempt to improve signal for small models in general.

This file generally creates just a TASKS_TABLE and TASKS_GROUPS which are then imported by LightEval.

Example usage (lighteval_tasks.py is the path to this file):
===================
accelerate launch --num_processes=1 lighteval/run_evals_accelerate.py --model_args="pretrained=HuggingFaceFW/ablation-model-fineweb-edu" \
    --custom_tasks "lighteval_tasks.py" --output_dir [OUTPUTPATH] --max_samples 1000 \ 
    --tasks "custom|hellaswag|0|1,custom|winogrande|0|1,custom|piqa|0|1,custom|siqa|0|1,custom|openbookqa|0|1,custom|arc:easy|0|1,custom|arc:challenge|0|1,custom|commonsense_qa|0|1,custom|mmlu:abstract_algebra|0|1,custom|mmlu:anatomy|0|1,custom|mmlu:astronomy|0|1,custom|mmlu:business_ethics|0|1,custom|mmlu:clinical_knowledge|0|1,custom|mmlu:college_biology|0|1,custom|mmlu:college_chemistry|0|1,custom|mmlu:college_computer_science|0|1,custom|mmlu:college_mathematics|0|1,custom|mmlu:college_medicine|0|1,custom|mmlu:college_physics|0|1,custom|mmlu:computer_security|0|1,custom|mmlu:conceptual_physics|0|1,custom|mmlu:econometrics|0|1,custom|mmlu:electrical_engineering|0|1,custom|mmlu:elementary_mathematics|0|1,custom|mmlu:formal_logic|0|1,custom|mmlu:global_facts|0|1,custom|mmlu:high_school_biology|0|1,custom|mmlu:high_school_chemistry|0|1,custom|mmlu:high_school_computer_science|0|1,custom|mmlu:high_school_european_history|0|1,custom|mmlu:high_school_geography|0|1,custom|mmlu:high_school_government_and_politics|0|1,custom|mmlu:high_school_macroeconomics|0|1,custom|mmlu:high_school_mathematics|0|1,custom|mmlu:high_school_microeconomics|0|1,custom|mmlu:high_school_physics|0|1,custom|mmlu:high_school_psychology|0|1,custom|mmlu:high_school_statistics|0|1,custom|mmlu:high_school_us_history|0|1,custom|mmlu:high_school_world_history|0|1,custom|mmlu:human_aging|0|1,custom|mmlu:human_sexuality|0|1,custom|mmlu:international_law|0|1,custom|mmlu:jurisprudence|0|1,custom|mmlu:logical_fallacies|0|1,custom|mmlu:machine_learning|0|1,custom|mmlu:management|0|1,custom|mmlu:marketing|0|1,custom|mmlu:medical_genetics|0|1,custom|mmlu:miscellaneous|0|1,custom|mmlu:moral_disputes|0|1,custom|mmlu:moral_scenarios|0|1,custom|mmlu:nutrition|0|1,custom|mmlu:philosophy|0|1,custom|mmlu:prehistory|0|1,custom|mmlu:professional_accounting|0|1,custom|mmlu:professional_law|0|1,custom|mmlu:professional_medicine|0|1,custom|mmlu:professional_psychology|0|1,custom|mmlu:public_relations|0|1,custom|mmlu:security_studies|0|1,custom|mmlu:sociology|0|1,custom|mmlu:us_foreign_policy|0|1,custom|mmlu:virology|0|1,custom|mmlu:world_religions|0|1"
===================
custom|cmmlu:agronomy|0|1,custom|cmmlu:anatomy|0|1,custom|cmmlu:ancient_chinese|0|1,custom|cmmlu:arts|0|1,custom|cmmlu:astronomy|0|1,custom|cmmlu:business_ethics|0|1,custom|cmmlu:chinese_civil_service_exam|0|1,custom|cmmlu:chinese_driving_rule|0|1,custom|cmmlu:chinese_food_culture|0|1,custom|cmmlu:chinese_foreign_policy|0|1,custom|cmmlu:chinese_history|0|1,custom|cmmlu:chinese_literature|0|1,custom|cmmlu:chinese_teacher_qualification|0|1,custom|cmmlu:clinical_knowledge|0|1,custom|cmmlu:college_actuarial_science|0|1,custom|cmmlu:college_education|0|1,custom|cmmlu:college_engineering_hydrology|0|1,custom|cmmlu:college_law|0|1,custom|cmmlu:college_mathematics|0|1,custom|cmmlu:college_medical_statistics|0|1,custom|cmmlu:college_medicine|0|1,custom|cmmlu:computer_science|0|1,custom|cmmlu:computer_security|0|1,custom|cmmlu:conceptual_physics|0|1,custom|cmmlu:construction_project_management|0|1,custom|cmmlu:economics|0|1,custom|cmmlu:education|0|1,custom|cmmlu:electrical_engineering|0|1,custom|cmmlu:elementary_chinese|0|1,custom|cmmlu:elementary_commonsense|0|1,custom|cmmlu:elementary_information_and_technology|0|1,custom|cmmlu:elementary_mathematics|0|1,custom|cmmlu:ethnology|0|1,custom|cmmlu:food_science|0|1,custom|cmmlu:genetics|0|1,custom|cmmlu:global_facts|0|1,custom|cmmlu:high_school_biology|0|1,custom|cmmlu:high_school_chemistry|0|1,custom|cmmlu:high_school_geography|0|1,custom|cmmlu:high_school_mathematics|0|1,custom|cmmlu:high_school_physics|0|1,custom|cmmlu:high_school_politics|0|1,custom|cmmlu:human_sexuality|0|1,custom|cmmlu:international_law|0|1,custom|cmmlu:journalism|0|1,custom|cmmlu:jurisprudence|0|1,custom|cmmlu:legal_and_moral_basis|0|1,custom|cmmlu:logical|0|1,custom|cmmlu:machine_learning|0|1,custom|cmmlu:management|0|1,custom|cmmlu:marketing|0|1,custom|cmmlu:marxist_theory|0|1,custom|cmmlu:modern_chinese|0|1,custom|cmmlu:nutrition|0|1,custom|cmmlu:philosophy|0|1,custom|cmmlu:professional_accounting|0|1,custom|cmmlu:professional_law|0|1,custom|cmmlu:professional_medicine|0|1,custom|cmmlu:professional_psychology|0|1,custom|cmmlu:public_relations|0|1,custom|cmmlu:security_study|0|1,custom|cmmlu:sociology|0|1,custom|cmmlu:sports_science|0|1,custom|cmmlu:traditional_chinese_medicine|0|1,custom|cmmlu:virology|0|1,custom|cmmlu:world_history|0|1,custom|cmmlu:world_religions|0|1
===================
custom|ceval:computer_network|0|1,custom|ceval:operating_system|0|1,custom|ceval:computer_architecture|0|1,custom|ceval:college_programming|0|1,custom|ceval:college_physics|0|1,custom|ceval:college_chemistry|0|1,custom|ceval:advanced_mathematics|0|1,custom|ceval:probability_and_statistics|0|1,custom|ceval:discrete_mathematics|0|1,custom|ceval:electrical_engineer|0|1,custom|ceval:metrology_engineer|0|1,custom|ceval:high_school_mathematics|0|1,custom|ceval:high_school_physics|0|1,custom|ceval:high_school_chemistry|0|1,custom|ceval:high_school_biology|0|1,custom|ceval:middle_school_mathematics|0|1,custom|ceval:middle_school_biology|0|1,custom|ceval:middle_school_physics|0|1,custom|ceval:middle_school_chemistry|0|1,custom|ceval:veterinary_medicine|0|1,custom|ceval:college_economics|0|1,custom|ceval:business_administration|0|1,custom|ceval:marxism|0|1,custom|ceval:mao_zedong_thought|0|1,custom|ceval:education_science|0|1,custom|ceval:teacher_qualification|0|1,custom|ceval:high_school_politics|0|1,custom|ceval:high_school_geography|0|1,custom|ceval:middle_school_politics|0|1,custom|ceval:middle_school_geography|0|1,custom|ceval:modern_chinese_history|0|1,custom|ceval:ideological_and_moral_cultivation|0|1,custom|ceval:logic|0|1,custom|ceval:law|0|1,custom|ceval:chinese_language_and_literature|0|1,custom|ceval:art_studies|0|1,custom|ceval:professional_tour_guide|0|1,custom|ceval:legal_professional|0|1,custom|ceval:high_school_chinese|0|1,custom|ceval:high_school_history|0|1,custom|ceval:middle_school_history|0|1,custom|ceval:civil_servant|0|1,custom|ceval:sports_science|0|1,custom|ceval:plant_protection|0|1,custom|ceval:basic_medicine|0|1,custom|ceval:clinical_medicine|0|1,custom|ceval:urban_and_rural_planner|0|1,custom|ceval:accountant|0|1,custom|ceval:fire_engineer|0|1,custom|ceval:environmental_impact_assessment_engineer|0|1,custom|ceval:tax_accountant|0|1,custom|ceval:physician|0|1
===================

More info here: https://github.com/huggingface/lighteval?tab=readme-ov-file#evaluate-a-model-on-extended-community-or-custom-tasks
For more info on differences between MMLU implementations: https://huggingface.co/blog/open-llm-leaderboard-mmlu#1001-flavors-of-mmlu
In particular, the default leaderboard MMLU implementation (which uses "A", "B", etc as answer targets) gives generally random results on small/non instruction tuned models.
Instead, we use the full MMLU answer as the target.
"""
import re
from typing import List, Tuple

from lighteval.metrics import Metrics
from lighteval.tasks.lighteval_task import LightevalTaskConfig
from lighteval.tasks.requests import Doc
from lighteval.tasks.tasks_prompt_formatting import LETTER_INDICES

_TASKS_STRINGS: List[Tuple[LightevalTaskConfig, str]] = []
_TASKS: List[LightevalTaskConfig] = []

## COMMON_SENSE_REASONING_TASKS ##
COMMON_SENSE_REASONING_TASKS = [
    LightevalTaskConfig(
        name="hellaswag",
        prompt_function="hellaswag_prompt",
        hf_repo="hellaswag",
        hf_subset="default",
        metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
    ),
    LightevalTaskConfig(
        name="winogrande",
        prompt_function="winogrande",
        hf_repo="winogrande",
        hf_subset="winogrande_xl",
        metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
    ),
    LightevalTaskConfig(
        name="piqa",
        prompt_function="piqa_harness",
        hf_repo="piqa",
        hf_subset="plain_text",
        metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
    ),
    LightevalTaskConfig(
        name="siqa",
        prompt_function="siqa_prompt",
        hf_repo="lighteval/siqa",
        hf_subset="default",
        hf_avail_splits=["train", "validation"],
        metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
    ),
    LightevalTaskConfig(
        name="openbookqa",
        prompt_function="openbookqa",
        hf_repo="openbookqa",
        hf_subset="main",
        metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
    ),
    LightevalTaskConfig(
        name="arc:easy",
        prompt_function="arc",
        hf_repo="ai2_arc",
        hf_subset="ARC-Easy",
        evaluation_splits=["test"],
        generation_size=1,
        metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
    ),
    LightevalTaskConfig(
        name="arc:challenge",
        prompt_function="arc",
        hf_repo="ai2_arc",
        hf_subset="ARC-Challenge",
        evaluation_splits=["test"],
        generation_size=1,
        metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
    ),
    LightevalTaskConfig(
        name="commonsense_qa",
        prompt_function="commonsense_qa_prompt",
        hf_repo="commonsense_qa",
        hf_subset="default",
        metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
    ),
]


def commonsense_qa_prompt(line, task_name: str = None):
    return Doc(
        task_name=task_name,
        query=line["question"],
        choices=[f" {c}" for c in line["choices"]["text"]],
        gold_index=LETTER_INDICES.index(line["answerKey"].strip()),
        instruction="",
    )


def siqa_prompt(line, task_name: str = None):
    return Doc(
        task_name=task_name,
        query=line["context"] + " " + line["question"],
        choices=[f" {c}" for c in [line["answerA"], line["answerB"], line["answerC"]]],
        gold_index=int(line["label"]) - 1,
        instruction="",
    )


def hellaswag_prompt(line, task_name: str = None):
    def preprocess(text):
        """Comes from AiHarness"""
        # text = text.strip()
        # NOTE: Brackets are artifacts of the WikiHow dataset portion of HellaSwag.
        text = text.replace(" [title]", ". ")
        text = re.sub("\\[.*?\\]", "", text)
        text = text.replace("  ", " ")
        return text

    ctx = f"{line['ctx_a']} {line['ctx_b'].capitalize()} "
    return Doc(
        task_name=task_name,
        query=preprocess(line["activity_label"] + ": " + ctx),
        choices=[" " + preprocess(ending) for ending in line["endings"]],
        gold_index=int(line["label"]) if line["label"] != "" else -1,  # -1 for test
        # "metric": "choices_loglikelihood",
    )


# 0 short for common sense
COMMON_SENSE_REASONING_STRING = [(t, f"custom|{t.name}|0|1") for t in COMMON_SENSE_REASONING_TASKS]
_TASKS_STRINGS.extend(COMMON_SENSE_REASONING_STRING)
_TASKS += COMMON_SENSE_REASONING_TASKS

## MMLU ##
class CustomMMLUEvaluationTask(LightevalTaskConfig):
    def __init__(
        self,
        name,
        prompt_function="mmlu_prompt",
        hf_repo="lighteval/mmlu",
        hf_subset=None,
        #  metric=[Metrics.loglikelihood_acc_single_token],
        metric=[Metrics.loglikelihood_acc, Metrics.loglikelihood_acc_norm_nospace],
        hf_avail_splits=None,
        evaluation_splits=["test"],
        few_shots_split="dev",
        few_shots_select=None,
        suite=None,
        generation_size=-1,
        stop_sequence=None,
        output_regex=None,
        frozen=False,
    ):
        super().__init__(
            name=name,
            prompt_function=prompt_function,
            hf_repo=hf_repo,
            hf_subset=hf_subset,
            metric=metric,
            hf_avail_splits=hf_avail_splits,
            evaluation_splits=evaluation_splits,
            few_shots_split=few_shots_split,
            few_shots_select=few_shots_select,
            suite=suite,
            generation_size=generation_size,
            stop_sequence=stop_sequence,
            output_regex=output_regex,
            frozen=frozen,
        )


MMLU_TASKS = [
    CustomMMLUEvaluationTask(name="mmlu:abstract_algebra", hf_subset="abstract_algebra"),
    CustomMMLUEvaluationTask(name="mmlu:anatomy", hf_subset="anatomy"),
    CustomMMLUEvaluationTask(name="mmlu:astronomy", hf_subset="astronomy"),
    CustomMMLUEvaluationTask(name="mmlu:business_ethics", hf_subset="business_ethics"),
    CustomMMLUEvaluationTask(name="mmlu:clinical_knowledge", hf_subset="clinical_knowledge"),
    CustomMMLUEvaluationTask(name="mmlu:college_biology", hf_subset="college_biology"),
    CustomMMLUEvaluationTask(name="mmlu:college_chemistry", hf_subset="college_chemistry"),
    CustomMMLUEvaluationTask(name="mmlu:college_computer_science", hf_subset="college_computer_science"),
    CustomMMLUEvaluationTask(name="mmlu:college_mathematics", hf_subset="college_mathematics"),
    CustomMMLUEvaluationTask(name="mmlu:college_medicine", hf_subset="college_medicine"),
    CustomMMLUEvaluationTask(name="mmlu:college_physics", hf_subset="college_physics"),
    CustomMMLUEvaluationTask(name="mmlu:computer_security", hf_subset="computer_security"),
    CustomMMLUEvaluationTask(name="mmlu:conceptual_physics", hf_subset="conceptual_physics"),
    CustomMMLUEvaluationTask(name="mmlu:econometrics", hf_subset="econometrics"),
    CustomMMLUEvaluationTask(name="mmlu:electrical_engineering", hf_subset="electrical_engineering"),
    CustomMMLUEvaluationTask(name="mmlu:elementary_mathematics", hf_subset="elementary_mathematics"),
    CustomMMLUEvaluationTask(name="mmlu:formal_logic", hf_subset="formal_logic"),
    CustomMMLUEvaluationTask(name="mmlu:global_facts", hf_subset="global_facts"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_biology", hf_subset="high_school_biology"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_chemistry", hf_subset="high_school_chemistry"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_computer_science", hf_subset="high_school_computer_science"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_european_history", hf_subset="high_school_european_history"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_geography", hf_subset="high_school_geography"),
    CustomMMLUEvaluationTask(
        name="mmlu:high_school_government_and_politics", hf_subset="high_school_government_and_politics"
    ),
    CustomMMLUEvaluationTask(name="mmlu:high_school_macroeconomics", hf_subset="high_school_macroeconomics"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_mathematics", hf_subset="high_school_mathematics"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_microeconomics", hf_subset="high_school_microeconomics"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_physics", hf_subset="high_school_physics"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_psychology", hf_subset="high_school_psychology"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_statistics", hf_subset="high_school_statistics"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_us_history", hf_subset="high_school_us_history"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_world_history", hf_subset="high_school_world_history"),
    CustomMMLUEvaluationTask(name="mmlu:human_aging", hf_subset="human_aging"),
    CustomMMLUEvaluationTask(name="mmlu:human_sexuality", hf_subset="human_sexuality"),
    CustomMMLUEvaluationTask(name="mmlu:international_law", hf_subset="international_law"),
    CustomMMLUEvaluationTask(name="mmlu:jurisprudence", hf_subset="jurisprudence"),
    CustomMMLUEvaluationTask(name="mmlu:logical_fallacies", hf_subset="logical_fallacies"),
    CustomMMLUEvaluationTask(name="mmlu:machine_learning", hf_subset="machine_learning"),
    CustomMMLUEvaluationTask(name="mmlu:management", hf_subset="management"),
    CustomMMLUEvaluationTask(name="mmlu:marketing", hf_subset="marketing"),
    CustomMMLUEvaluationTask(name="mmlu:medical_genetics", hf_subset="medical_genetics"),
    CustomMMLUEvaluationTask(name="mmlu:miscellaneous", hf_subset="miscellaneous"),
    CustomMMLUEvaluationTask(name="mmlu:moral_disputes", hf_subset="moral_disputes"),
    CustomMMLUEvaluationTask(name="mmlu:moral_scenarios", hf_subset="moral_scenarios"),
    CustomMMLUEvaluationTask(name="mmlu:nutrition", hf_subset="nutrition"),
    CustomMMLUEvaluationTask(name="mmlu:philosophy", hf_subset="philosophy"),
    CustomMMLUEvaluationTask(name="mmlu:prehistory", hf_subset="prehistory"),
    CustomMMLUEvaluationTask(name="mmlu:professional_accounting", hf_subset="professional_accounting"),
    CustomMMLUEvaluationTask(name="mmlu:professional_law", hf_subset="professional_law"),
    CustomMMLUEvaluationTask(name="mmlu:professional_medicine", hf_subset="professional_medicine"),
    CustomMMLUEvaluationTask(name="mmlu:professional_psychology", hf_subset="professional_psychology"),
    CustomMMLUEvaluationTask(name="mmlu:public_relations", hf_subset="public_relations"),
    CustomMMLUEvaluationTask(name="mmlu:security_studies", hf_subset="security_studies"),
    CustomMMLUEvaluationTask(name="mmlu:sociology", hf_subset="sociology"),
    CustomMMLUEvaluationTask(name="mmlu:us_foreign_policy", hf_subset="us_foreign_policy"),
    CustomMMLUEvaluationTask(name="mmlu:virology", hf_subset="virology"),
    CustomMMLUEvaluationTask(name="mmlu:world_religions", hf_subset="world_religions"),
]


def mmlu_prompt(line, task_name: str = None):
    """MMLU prompt without letters"""
    topic = line["subject"]
    prompt = f"The following are questions about {topic.replace('_', ' ')}.\nQuestion: "
    prompt += line["question"] + "\nAnswer:"
    #print(f"mmlu_prompt={prompt}")

    return Doc(
        task_name=task_name,
        query=prompt,
        choices=[f" {c}" for c in line["choices"]],
        gold_index=line["answer"],
        instruction=f"The following are questions about {topic.replace('_', ' ')}.\n",
    )


MMLU_STRING = [(t, f"custom|{t.name}|0|1") for t in MMLU_TASKS]
_TASKS_STRINGS.extend(MMLU_STRING)
_TASKS += MMLU_TASKS


############################################################################################################################################################
## CMMLU ##
class CustomCMMLUEvaluationTask(LightevalTaskConfig):
    def __init__(
        self,
        name,
        prompt_function="cmmlu_prompt",
        hf_repo="ldwang/lighteval-cmmlu",
        hf_subset=None,
        #  metric=[Metrics.loglikelihood_acc_single_token],
        metric=[Metrics.loglikelihood_acc, Metrics.loglikelihood_acc_norm_nospace],
        hf_avail_splits=None,
        evaluation_splits=["test"],
        few_shots_split="dev",
        few_shots_select=None,
        suite=None,
        generation_size=-1,
        stop_sequence=None,
        output_regex=None,
        frozen=False,
    ):
        super().__init__(
            name=name,
            prompt_function=prompt_function,
            hf_repo=hf_repo,
            hf_subset=hf_subset,
            metric=metric,
            hf_avail_splits=hf_avail_splits,
            evaluation_splits=evaluation_splits,
            few_shots_split=few_shots_split,
            few_shots_select=few_shots_select,
            suite=suite,
            generation_size=generation_size,
            stop_sequence=stop_sequence,
            output_regex=output_regex,
            frozen=frozen,
            trust_dataset=True,
        )


CMMLU_TASKS = [
		CustomCMMLUEvaluationTask(name="cmmlu:agronomy", hf_subset="agronomy"),
		CustomCMMLUEvaluationTask(name="cmmlu:anatomy", hf_subset="anatomy"),
		CustomCMMLUEvaluationTask(name="cmmlu:ancient_chinese", hf_subset="ancient_chinese"),
		CustomCMMLUEvaluationTask(name="cmmlu:arts", hf_subset="arts"),
		CustomCMMLUEvaluationTask(name="cmmlu:astronomy", hf_subset="astronomy"),
		CustomCMMLUEvaluationTask(name="cmmlu:business_ethics", hf_subset="business_ethics"),
		CustomCMMLUEvaluationTask(name="cmmlu:chinese_civil_service_exam", hf_subset="chinese_civil_service_exam"),
		CustomCMMLUEvaluationTask(name="cmmlu:chinese_driving_rule", hf_subset="chinese_driving_rule"),
		CustomCMMLUEvaluationTask(name="cmmlu:chinese_food_culture", hf_subset="chinese_food_culture"),
		CustomCMMLUEvaluationTask(name="cmmlu:chinese_foreign_policy", hf_subset="chinese_foreign_policy"),
		CustomCMMLUEvaluationTask(name="cmmlu:chinese_history", hf_subset="chinese_history"),
		CustomCMMLUEvaluationTask(name="cmmlu:chinese_literature", hf_subset="chinese_literature"),
		CustomCMMLUEvaluationTask(name="cmmlu:chinese_teacher_qualification", hf_subset="chinese_teacher_qualification"),
		CustomCMMLUEvaluationTask(name="cmmlu:clinical_knowledge", hf_subset="clinical_knowledge"),
		CustomCMMLUEvaluationTask(name="cmmlu:college_actuarial_science", hf_subset="college_actuarial_science"),
		CustomCMMLUEvaluationTask(name="cmmlu:college_education", hf_subset="college_education"),
		CustomCMMLUEvaluationTask(name="cmmlu:college_engineering_hydrology", hf_subset="college_engineering_hydrology"),
		CustomCMMLUEvaluationTask(name="cmmlu:college_law", hf_subset="college_law"),
		CustomCMMLUEvaluationTask(name="cmmlu:college_mathematics", hf_subset="college_mathematics"),
		CustomCMMLUEvaluationTask(name="cmmlu:college_medical_statistics", hf_subset="college_medical_statistics"),
		CustomCMMLUEvaluationTask(name="cmmlu:college_medicine", hf_subset="college_medicine"),
		CustomCMMLUEvaluationTask(name="cmmlu:computer_science", hf_subset="computer_science"),
		CustomCMMLUEvaluationTask(name="cmmlu:computer_security", hf_subset="computer_security"),
		CustomCMMLUEvaluationTask(name="cmmlu:conceptual_physics", hf_subset="conceptual_physics"),
		CustomCMMLUEvaluationTask(name="cmmlu:construction_project_management", hf_subset="construction_project_management"),
		CustomCMMLUEvaluationTask(name="cmmlu:economics", hf_subset="economics"),
		CustomCMMLUEvaluationTask(name="cmmlu:education", hf_subset="education"),
		CustomCMMLUEvaluationTask(name="cmmlu:electrical_engineering", hf_subset="electrical_engineering"),
		CustomCMMLUEvaluationTask(name="cmmlu:elementary_chinese", hf_subset="elementary_chinese"),
		CustomCMMLUEvaluationTask(name="cmmlu:elementary_commonsense", hf_subset="elementary_commonsense"),
		CustomCMMLUEvaluationTask(name="cmmlu:elementary_information_and_technology", hf_subset="elementary_information_and_technology"),
		CustomCMMLUEvaluationTask(name="cmmlu:elementary_mathematics", hf_subset="elementary_mathematics"),
		CustomCMMLUEvaluationTask(name="cmmlu:ethnology", hf_subset="ethnology"),
		CustomCMMLUEvaluationTask(name="cmmlu:food_science", hf_subset="food_science"),
		CustomCMMLUEvaluationTask(name="cmmlu:genetics", hf_subset="genetics"),
		CustomCMMLUEvaluationTask(name="cmmlu:global_facts", hf_subset="global_facts"),
		CustomCMMLUEvaluationTask(name="cmmlu:high_school_biology", hf_subset="high_school_biology"),
		CustomCMMLUEvaluationTask(name="cmmlu:high_school_chemistry", hf_subset="high_school_chemistry"),
		CustomCMMLUEvaluationTask(name="cmmlu:high_school_geography", hf_subset="high_school_geography"),
		CustomCMMLUEvaluationTask(name="cmmlu:high_school_mathematics", hf_subset="high_school_mathematics"),
		CustomCMMLUEvaluationTask(name="cmmlu:high_school_physics", hf_subset="high_school_physics"),
		CustomCMMLUEvaluationTask(name="cmmlu:high_school_politics", hf_subset="high_school_politics"),
		CustomCMMLUEvaluationTask(name="cmmlu:human_sexuality", hf_subset="human_sexuality"),
		CustomCMMLUEvaluationTask(name="cmmlu:international_law", hf_subset="international_law"),
		CustomCMMLUEvaluationTask(name="cmmlu:journalism", hf_subset="journalism"),
		CustomCMMLUEvaluationTask(name="cmmlu:jurisprudence", hf_subset="jurisprudence"),
		CustomCMMLUEvaluationTask(name="cmmlu:legal_and_moral_basis", hf_subset="legal_and_moral_basis"),
		CustomCMMLUEvaluationTask(name="cmmlu:logical", hf_subset="logical"),
		CustomCMMLUEvaluationTask(name="cmmlu:machine_learning", hf_subset="machine_learning"),
		CustomCMMLUEvaluationTask(name="cmmlu:management", hf_subset="management"),
		CustomCMMLUEvaluationTask(name="cmmlu:marketing", hf_subset="marketing"),
		CustomCMMLUEvaluationTask(name="cmmlu:marxist_theory", hf_subset="marxist_theory"),
		CustomCMMLUEvaluationTask(name="cmmlu:modern_chinese", hf_subset="modern_chinese"),
		CustomCMMLUEvaluationTask(name="cmmlu:nutrition", hf_subset="nutrition"),
		CustomCMMLUEvaluationTask(name="cmmlu:philosophy", hf_subset="philosophy"),
		CustomCMMLUEvaluationTask(name="cmmlu:professional_accounting", hf_subset="professional_accounting"),
		CustomCMMLUEvaluationTask(name="cmmlu:professional_law", hf_subset="professional_law"),
		CustomCMMLUEvaluationTask(name="cmmlu:professional_medicine", hf_subset="professional_medicine"),
		CustomCMMLUEvaluationTask(name="cmmlu:professional_psychology", hf_subset="professional_psychology"),
		CustomCMMLUEvaluationTask(name="cmmlu:public_relations", hf_subset="public_relations"),
		CustomCMMLUEvaluationTask(name="cmmlu:security_study", hf_subset="security_study"),
		CustomCMMLUEvaluationTask(name="cmmlu:sociology", hf_subset="sociology"),
		CustomCMMLUEvaluationTask(name="cmmlu:sports_science", hf_subset="sports_science"),
		CustomCMMLUEvaluationTask(name="cmmlu:traditional_chinese_medicine", hf_subset="traditional_chinese_medicine"),
		CustomCMMLUEvaluationTask(name="cmmlu:virology", hf_subset="virology"),
		CustomCMMLUEvaluationTask(name="cmmlu:world_history", hf_subset="world_history"),
		CustomCMMLUEvaluationTask(name="cmmlu:world_religions", hf_subset="world_religions"),
]

cmmlu_subject_mapping = {
    'agronomy': '农学',
    'anatomy': '解剖学',
    'ancient_chinese': '古汉语',
    'arts': '艺术学',
    'astronomy': '天文学',
    'business_ethics': '商业伦理',
    'chinese_civil_service_exam': '中国公务员考试',
    'chinese_driving_rule': '中国驾驶规则',
    'chinese_food_culture': '中国饮食文化',
    'chinese_foreign_policy': '中国外交政策',
    'chinese_history': '中国历史',
    'chinese_literature': '中国文学',
    'chinese_teacher_qualification': '中国教师资格',
    'clinical_knowledge': '临床知识',
    'college_actuarial_science': '大学精算学',
    'college_education': '大学教育学',
    'college_engineering_hydrology': '大学工程水文学',
    'college_law': '大学法律',
    'college_mathematics': '大学数学',
    'college_medical_statistics': '大学医学统计',
    'college_medicine': '大学医学',
    'computer_science': '计算机科学',
    'computer_security': '计算机安全',
    'conceptual_physics': '概念物理学',
    'construction_project_management': '建设工程管理',
    'economics': '经济学',
    'education': '教育学',
    'electrical_engineering': '电气工程',
    'elementary_chinese': '小学语文',
    'elementary_commonsense': '小学常识',
    'elementary_information_and_technology': '小学信息技术',
    'elementary_mathematics': '初等数学',
    'ethnology': '民族学',
    'food_science': '食品科学',
    'genetics': '遗传学',
    'global_facts': '全球事实',
    'high_school_biology': '高中生物',
    'high_school_chemistry': '高中化学',
    'high_school_geography': '高中地理',
    'high_school_mathematics': '高中数学',
    'high_school_physics': '高中物理学',
    'high_school_politics': '高中政治',
    'human_sexuality': '人类性行为',
    'international_law': '国际法学',
    'journalism': '新闻学',
    'jurisprudence': '法理学',
    'legal_and_moral_basis': '法律与道德基础',
    'logical': '逻辑学',
    'machine_learning': '机器学习',
    'management': '管理学',
    'marketing': '市场营销',
    'marxist_theory': '马克思主义理论',
    'modern_chinese': '现代汉语',
    'nutrition': '营养学',
    'philosophy': '哲学',
    'professional_accounting': '专业会计',
    'professional_law': '专业法学',
    'professional_medicine': '专业医学',
    'professional_psychology': '专业心理学',
    'public_relations': '公共关系',
    'security_study': '安全研究',
    'sociology': '社会学',
    'sports_science': '体育学',
    'traditional_chinese_medicine': '中医中药',
    'virology': '病毒学',
    'world_history': '世界历史',
    'world_religions': '世界宗教'
}

def cmmlu_prompt(line, task_name: str = None):
    # 以下是关于{_ch_name}的单项选择题,请直接给出正确答案的选项。\n题目:{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}
    # 答案是: {{{answer}}}
    """CMMLU prompt without letters"""
    topic = cmmlu_subject_mapping[line['subject']]
    prompt = f"以下是关于{topic.replace('_', ' ')}的单项选择题,请直接给出正确答案的选项。\n题目:"
    prompt += line["question"] + "\n答案是:"
    #print(f"cmmlu_prompt={prompt}")

    return Doc(
        task_name=task_name,
        query=prompt,
        choices=[f" {c}" for c in line["choices"]],
        gold_index=line["answer"],
        instruction=None,
    )

CMMLU_STRING = [(t, f"custom|{t.name}|0|1") for t in CMMLU_TASKS]
_TASKS_STRINGS.extend(CMMLU_STRING)
_TASKS += CMMLU_TASKS
print(f'{",".join([t[1] for t in CMMLU_STRING])}')

############################################################################################################################################################
## CEVAL ##
class CustomCEVALEvaluationTask(LightevalTaskConfig):
    def __init__(
        self,
        name,
        prompt_function="ceval_prompt",
        hf_repo="ldwang/lighteval-ceval-exam",
        hf_subset=None,
        #  metric=[Metrics.loglikelihood_acc_single_token],
        metric=[Metrics.loglikelihood_acc, Metrics.loglikelihood_acc_norm_nospace],
        hf_avail_splits=None,
        evaluation_splits=["val"],
        few_shots_split="dev",
        few_shots_select=None,
        suite=None,
        generation_size=-1,
        stop_sequence=None,
        output_regex=None,
        frozen=False,
    ):
        super().__init__(
            name=name,
            prompt_function=prompt_function,
            hf_repo=hf_repo,
            hf_subset=hf_subset,
            metric=metric,
            hf_avail_splits=hf_avail_splits,
            evaluation_splits=evaluation_splits,
            few_shots_split=few_shots_split,
            few_shots_select=few_shots_select,
            suite=suite,
            generation_size=generation_size,
            stop_sequence=stop_sequence,
            output_regex=output_regex,
            frozen=frozen,
            trust_dataset=True,
        )


CEVAL_TASKS = [
    CustomCEVALEvaluationTask(name="ceval:computer_network", hf_subset="computer_network"),
    CustomCEVALEvaluationTask(name="ceval:operating_system", hf_subset="operating_system"),
    CustomCEVALEvaluationTask(name="ceval:computer_architecture", hf_subset="computer_architecture"),
    CustomCEVALEvaluationTask(name="ceval:college_programming", hf_subset="college_programming"),
    CustomCEVALEvaluationTask(name="ceval:college_physics", hf_subset="college_physics"),
    CustomCEVALEvaluationTask(name="ceval:college_chemistry", hf_subset="college_chemistry"),
    CustomCEVALEvaluationTask(name="ceval:advanced_mathematics", hf_subset="advanced_mathematics"),
    CustomCEVALEvaluationTask(name="ceval:probability_and_statistics", hf_subset="probability_and_statistics"),
    CustomCEVALEvaluationTask(name="ceval:discrete_mathematics", hf_subset="discrete_mathematics"),
    CustomCEVALEvaluationTask(name="ceval:electrical_engineer", hf_subset="electrical_engineer"),
    CustomCEVALEvaluationTask(name="ceval:metrology_engineer", hf_subset="metrology_engineer"),
    CustomCEVALEvaluationTask(name="ceval:high_school_mathematics", hf_subset="high_school_mathematics"),
    CustomCEVALEvaluationTask(name="ceval:high_school_physics", hf_subset="high_school_physics"),
    CustomCEVALEvaluationTask(name="ceval:high_school_chemistry", hf_subset="high_school_chemistry"),
    CustomCEVALEvaluationTask(name="ceval:high_school_biology", hf_subset="high_school_biology"),
    CustomCEVALEvaluationTask(name="ceval:middle_school_mathematics", hf_subset="middle_school_mathematics"),
    CustomCEVALEvaluationTask(name="ceval:middle_school_biology", hf_subset="middle_school_biology"),
    CustomCEVALEvaluationTask(name="ceval:middle_school_physics", hf_subset="middle_school_physics"),
    CustomCEVALEvaluationTask(name="ceval:middle_school_chemistry", hf_subset="middle_school_chemistry"),
    CustomCEVALEvaluationTask(name="ceval:veterinary_medicine", hf_subset="veterinary_medicine"),
    CustomCEVALEvaluationTask(name="ceval:college_economics", hf_subset="college_economics"),
    CustomCEVALEvaluationTask(name="ceval:business_administration", hf_subset="business_administration"),
    CustomCEVALEvaluationTask(name="ceval:marxism", hf_subset="marxism"),
    CustomCEVALEvaluationTask(name="ceval:mao_zedong_thought", hf_subset="mao_zedong_thought"),
    CustomCEVALEvaluationTask(name="ceval:education_science", hf_subset="education_science"),
    CustomCEVALEvaluationTask(name="ceval:teacher_qualification", hf_subset="teacher_qualification"),
    CustomCEVALEvaluationTask(name="ceval:high_school_politics", hf_subset="high_school_politics"),
    CustomCEVALEvaluationTask(name="ceval:high_school_geography", hf_subset="high_school_geography"),
    CustomCEVALEvaluationTask(name="ceval:middle_school_politics", hf_subset="middle_school_politics"),
    CustomCEVALEvaluationTask(name="ceval:middle_school_geography", hf_subset="middle_school_geography"),
    CustomCEVALEvaluationTask(name="ceval:modern_chinese_history", hf_subset="modern_chinese_history"),
    CustomCEVALEvaluationTask(name="ceval:ideological_and_moral_cultivation", hf_subset="ideological_and_moral_cultivation"),
    CustomCEVALEvaluationTask(name="ceval:logic", hf_subset="logic"),
    CustomCEVALEvaluationTask(name="ceval:law", hf_subset="law"),
    CustomCEVALEvaluationTask(name="ceval:chinese_language_and_literature", hf_subset="chinese_language_and_literature"),
    CustomCEVALEvaluationTask(name="ceval:art_studies", hf_subset="art_studies"),
    CustomCEVALEvaluationTask(name="ceval:professional_tour_guide", hf_subset="professional_tour_guide"),
    CustomCEVALEvaluationTask(name="ceval:legal_professional", hf_subset="legal_professional"),
    CustomCEVALEvaluationTask(name="ceval:high_school_chinese", hf_subset="high_school_chinese"),
    CustomCEVALEvaluationTask(name="ceval:high_school_history", hf_subset="high_school_history"),
    CustomCEVALEvaluationTask(name="ceval:middle_school_history", hf_subset="middle_school_history"),
    CustomCEVALEvaluationTask(name="ceval:civil_servant", hf_subset="civil_servant"),
    CustomCEVALEvaluationTask(name="ceval:sports_science", hf_subset="sports_science"),
    CustomCEVALEvaluationTask(name="ceval:plant_protection", hf_subset="plant_protection"),
    CustomCEVALEvaluationTask(name="ceval:basic_medicine", hf_subset="basic_medicine"),
    CustomCEVALEvaluationTask(name="ceval:clinical_medicine", hf_subset="clinical_medicine"),
    CustomCEVALEvaluationTask(name="ceval:urban_and_rural_planner", hf_subset="urban_and_rural_planner"),
    CustomCEVALEvaluationTask(name="ceval:accountant", hf_subset="accountant"),
    CustomCEVALEvaluationTask(name="ceval:fire_engineer", hf_subset="fire_engineer"),
    CustomCEVALEvaluationTask(name="ceval:environmental_impact_assessment_engineer", hf_subset="environmental_impact_assessment_engineer"),
    CustomCEVALEvaluationTask(name="ceval:tax_accountant", hf_subset="tax_accountant"),
    CustomCEVALEvaluationTask(name="ceval:physician", hf_subset="physician"),
]

ceval_subject_mapping = {
    'computer_network': ['Computer Network', '计算机网络', 'STEM'],
    'operating_system': ['Operating System', '操作系统', 'STEM'],
    'computer_architecture': ['Computer Architecture', '计算机组成', 'STEM'],
    'college_programming': ['College Programming', '大学编程', 'STEM'],
    'college_physics': ['College Physics', '大学物理', 'STEM'],
    'college_chemistry': ['College Chemistry', '大学化学', 'STEM'],
    'advanced_mathematics': ['Advanced Mathematics', '高等数学', 'STEM'],
    'probability_and_statistics': ['Probability and Statistics', '概率统计', 'STEM'],
    'discrete_mathematics': ['Discrete Mathematics', '离散数学', 'STEM'],
    'electrical_engineer': ['Electrical Engineer', '注册电气工程师', 'STEM'],
    'metrology_engineer': ['Metrology Engineer', '注册计量师', 'STEM'],
    'high_school_mathematics': ['High School Mathematics', '高中数学', 'STEM'],
    'high_school_physics': ['High School Physics', '高中物理', 'STEM'],
    'high_school_chemistry': ['High School Chemistry', '高中化学', 'STEM'],
    'high_school_biology': ['High School Biology', '高中生物', 'STEM'],
    'middle_school_mathematics': ['Middle School Mathematics', '初中数学', 'STEM'],
    'middle_school_biology': ['Middle School Biology', '初中生物', 'STEM'],
    'middle_school_physics': ['Middle School Physics', '初中物理', 'STEM'],
    'middle_school_chemistry': ['Middle School Chemistry', '初中化学', 'STEM'],
    'veterinary_medicine': ['Veterinary Medicine', '兽医学', 'STEM'],
    'college_economics': ['College Economics', '大学经济学', 'Social Science'],
    'business_administration': ['Business Administration', '工商管理', 'Social Science'],
    'marxism': ['Marxism', '马克思主义基本原理', 'Social Science'],
    'mao_zedong_thought': ['Mao Zedong Thought', '毛泽东思想和中国特色社会主义理论体系概论', 'Social Science'],
    'education_science': ['Education Science', '教育学', 'Social Science'],
    'teacher_qualification': ['Teacher Qualification', '教师资格', 'Social Science'],
    'high_school_politics': ['High School Politics', '高中政治', 'Social Science'],
    'high_school_geography': ['High School Geography', '高中地理', 'Social Science'],
    'middle_school_politics': ['Middle School Politics', '初中政治', 'Social Science'],
    'middle_school_geography': ['Middle School Geography', '初中地理', 'Social Science'],
    'modern_chinese_history': ['Modern Chinese History', '近代史纲要', 'Humanities'],
    'ideological_and_moral_cultivation': ['Ideological and Moral Cultivation', '思想道德修养与法律基础', 'Humanities'],
    'logic': ['Logic', '逻辑学', 'Humanities'],
    'law': ['Law', '法学', 'Humanities'],
    'chinese_language_and_literature': ['Chinese Language and Literature', '中国语言文学', 'Humanities'],
    'art_studies': ['Art Studies', '艺术学', 'Humanities'],
    'professional_tour_guide': ['Professional Tour Guide', '导游资格', 'Humanities'],
    'legal_professional': ['Legal Professional', '法律职业资格', 'Humanities'],
    'high_school_chinese': ['High School Chinese', '高中语文', 'Humanities'],
    'high_school_history': ['High School History', '高中历史', 'Humanities'],
    'middle_school_history': ['Middle School History', '初中历史', 'Humanities'],
    'civil_servant': ['Civil Servant', '公务员', 'Other'],
    'sports_science': ['Sports Science', '体育学', 'Other'],
    'plant_protection': ['Plant Protection', '植物保护', 'Other'],
    'basic_medicine': ['Basic Medicine', '基础医学', 'Other'],
    'clinical_medicine': ['Clinical Medicine', '临床医学', 'Other'],
    'urban_and_rural_planner': ['Urban and Rural Planner', '注册城乡规划师', 'Other'],
    'accountant': ['Accountant', '注册会计师', 'Other'],
    'fire_engineer': ['Fire Engineer', '注册消防工程师', 'Other'],
    'environmental_impact_assessment_engineer': ['Environmental Impact Assessment Engineer', '环境影响评价工程师', 'Other'],
    'tax_accountant': ['Tax Accountant', '税务师', 'Other'],
    'physician': ['Physician', '医师资格', 'Other'],
}

def ceval_prompt(line, task_name: str = None):
    # f"以下是中国关于{_ch_name}考试的单项选择题,请选出其中的正确答案。\n{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案: "
    """CEVAL prompt without letters"""
    topic = ceval_subject_mapping[line['subject']][1]
    prompt = f"以下是中国关于{topic.replace('_', ' ')}考试的单项选择题,请选出其中的正确答案。\n题目:"
    prompt += line["question"] + "\n答案:"
    #print(f"ceval_prompt={prompt}")

    return Doc(
        task_name=task_name,
        query=prompt,
        choices=[f" {c}" for c in line["choices"]],
        gold_index=line["answer"],
        instruction=None,
    )

CEVAL_STRING = [(t, f"custom|{t.name}|0|1") for t in CEVAL_TASKS]
_TASKS_STRINGS.extend(CEVAL_STRING)
_TASKS += CEVAL_TASKS
print(f'{",".join([t[1] for t in CEVAL_STRING])}')

############################################################################################################################################################

# common sense reasoning + mmlu
EARLY_SIGNAL_TASKS = ",".join([t[1] for t in COMMON_SENSE_REASONING_STRING] + [t[1] for t in MMLU_STRING] + [t[1] for t in CMMLU_STRING])

# Convert to dict for lighteval
TASKS_TABLE = [task.as_dict() for task in _TASKS]
# You can have a few pre-organised groups of tasks
TASKS_GROUPS = {
    "early-signal": EARLY_SIGNAL_TASKS,
}