|
"""Turkish review multi-classification dataset.""" |
|
|
|
|
|
import csv |
|
import datasets |
|
from datasets.tasks import TextClassification |
|
|
|
_CITATION = """\ |
|
----ArabicNLPDataset---- |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The dataset, prepared in Arabic, includes 10.000 tests, 10.000 validations and 80000 train data. |
|
The data is composed of customer comments and created from e-commerce sites. |
|
""" |
|
|
|
|
|
_TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/BihterDass/ArabicTextClassificationDataset/main/train.csv" |
|
_VALIDATION_DOWNLOAD_URL ="https://raw.githubusercontent.com/BihterDass/ArabicTextClassificationDataset/main/dev.csv" |
|
_TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/BihterDass/ArabicTextClassificationDataset/main/test.csv" |
|
|
|
class ArabicNLPDatasetConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for ArabicNLPDataset Config""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for ArabicNLPDatasetConfig |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(ArabicNLPDatasetConfig, self).__init__(**kwargs) |
|
|
|
class ArabicNLPDataset(datasets.GeneratorBasedBuilder): |
|
"""ArabicNLPDataset Classification dataset.""" |
|
BUILDER_CONFIGS = [ |
|
TurkishNLPDatasetConfig( |
|
name="arabicData", |
|
version=datasets.Version("1.0.0"), |
|
description="ArabicNLPDataset: It is a classification study that will contribute to natural language processing operations.", |
|
), |
|
] |
|
def _info(self): |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"label": datasets.ClassLabel(names=["neg", "nor","pos"]), |
|
} |
|
), |
|
supervised_keys=None, |
|
|
|
homepage="https://github.com/BihterDass/turkish-nlp-dataset", |
|
citation=_CITATION, |
|
task_templates=[TextClassification(text_column="text", label_column="label")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL) |
|
validation_path = dl_manager.download_and_extract(_VALIDATION_DOWNLOAD_URL) |
|
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": validation_path}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
with open(filepath, encoding="utf-8") as csv_file: |
|
csv_reader = csv.reader( |
|
csv_file, |
|
delimiter=",", |
|
quoting=csv.QUOTE_ALL, |
|
skipinitialspace=True, |
|
) |
|
for id_, row in enumerate(csv_reader): |
|
( |
|
text, |
|
label, |
|
) = row |
|
|
|
yield id_, { |
|
"text": text, |
|
"label": int(label), |
|
} |