File size: 1,250 Bytes
93bc619
 
ebc6d6b
 
c8d1da9
ebc6d6b
c8d1da9
 
ebc6d6b
c8d1da9
 
767c5cb
ce07f07
 
 
 
 
 
 
 
 
 
 
4855b8a
 
 
 
ce07f07
 
 
 
 
4855b8a
ce07f07
 
 
 
 
 
 
 
767c5cb
ce07f07
 
 
4855b8a
ce07f07
 
767c5cb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---

license: apache-2.0
task_categories:
  - automatic-speech-recognition
language:
  - uz
pretty_name: Uzbek Language Speech-to-Text Dataset
size_categories:
  - 100K<n<1M

---

Dataset Summary
Languages: Uzbek
Size: Varied across different subsets.
Total Audio Duration: Varied
File Formats: .wav and mp3 for audio files, .tsv for transcriptions.
Dataset Structure
The dataset is organized into the following directories and files:

audio/

other/: Contains .tar archives like uz_other_0.taruz_other_1.tar
train/: Contains .tar archives like uz_train_0.tar.
validated/: Contains .tar archives like uz_validated_0.tar, uz_validated_1.tar, and uz_validated_2.tar.
test/: Contains individual .wav files.
transcription/: Contains .tsv files including:

other.tsv
train.tsv
validated.tsv
test.tsv
The .tsv files have two columns: file_name and transcription. Each entry provides the path to the audio file and its corresponding transcription.

Data Instances
A typical data point includes:

Audio File: Path to the .wav and mp3 files.
Transcription: Text transcribed from the audio.
Example data instance:

json
Copy code
{
  "file_name": "audio/train/common_voice_uz_28907218.mp3",
  "transcription": "Bugun ertalab Gyotenikiga taklifnoma oldim."
}