|
--- |
|
license: apache-2.0 |
|
pretty_name: OpenAI guided-diffusion 256px class-conditional unguided samples (20 samples) |
|
size_categories: |
|
- n<1K |
|
--- |
|
|
|
Read from the webdataset (after saving it somewhere on your disk) like this: |
|
|
|
```python |
|
from webdataset import WebDataset |
|
from typing import TypedDict, Iterable |
|
from PIL import Image |
|
from PIL.PngImagePlugin import PngImageFile |
|
from io import BytesIO |
|
from os import makedirs |
|
|
|
Example = TypedDict('Example', { |
|
'__key__': str, |
|
'__url__': str, |
|
'img.png': bytes, |
|
}) |
|
|
|
dataset = WebDataset('./wds-dataset-viewer-test/{00000..00001}.tar') |
|
|
|
out_root = 'out' |
|
makedirs(out_root, exist_ok=True) |
|
|
|
it: Iterable[Example] = iter(dataset) |
|
for ix, item in enumerate(it): |
|
with BytesIO(item['img.png']) as stream: |
|
img: PngImageFile = Image.open(stream) |
|
img.load() |
|
img.save(f'{out_root}/{ix}.png') |
|
``` |
|
|
|
Or from the HF dataset like this: |
|
|
|
```python |
|
from datasets import load_dataset |
|
from datasets.dataset_dict import DatasetDict |
|
from datasets.arrow_dataset import Dataset |
|
from PIL.PngImagePlugin import PngImageFile |
|
from typing import TypedDict, Iterable |
|
from os import makedirs |
|
|
|
class Item(TypedDict): |
|
index: int |
|
tar: str |
|
tar_path: str |
|
img: PngImageFile |
|
|
|
dataset: DatasetDict = load_dataset('Birchlabs/wds-dataset-viewer-test') |
|
train: Dataset = dataset['train'] |
|
|
|
out_root = 'out' |
|
makedirs(out_root, exist_ok=True) |
|
|
|
it: Iterable[Item] = iter(train) |
|
for item in it: |
|
item['img'].save(f'{out_root}/{item["index"]}.png') |
|
``` |