albertvillanova HF staff commited on
Commit
68b1bd5
1 Parent(s): be547dd

Delete legacy dataset_infos.json

Browse files
Files changed (1) hide show
  1. dataset_infos.json +0 -428
dataset_infos.json DELETED
@@ -1,428 +0,0 @@
1
- {
2
- "train": {
3
- "description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n",
4
- "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n",
5
- "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND",
6
- "license": "",
7
- "features": {
8
- "id": {
9
- "dtype": "string",
10
- "id": null,
11
- "_type": "Value"
12
- },
13
- "path": {
14
- "dtype": "string",
15
- "id": null,
16
- "_type": "Value"
17
- },
18
- "audio": {
19
- "sampling_rate": 16000,
20
- "mono": true,
21
- "decode": true,
22
- "id": null,
23
- "_type": "Audio"
24
- },
25
- "transcription": {
26
- "dtype": "string",
27
- "id": null,
28
- "_type": "Value"
29
- },
30
- "duration": {
31
- "dtype": "float32",
32
- "id": null,
33
- "_type": "Value"
34
- },
35
- "language": {
36
- "dtype": "string",
37
- "id": null,
38
- "_type": "Value"
39
- },
40
- "original_speaker_id": {
41
- "dtype": "int64",
42
- "id": null,
43
- "_type": "Value"
44
- },
45
- "session_id": {
46
- "dtype": "int64",
47
- "id": null,
48
- "_type": "Value"
49
- },
50
- "topic": {
51
- "dtype": "string",
52
- "id": null,
53
- "_type": "Value"
54
- }
55
- },
56
- "post_processed": null,
57
- "supervised_keys": null,
58
- "task_templates": [
59
- {
60
- "task": "automatic-speech-recognition",
61
- "audio_column": "audio",
62
- "transcription_column": "transcription"
63
- }
64
- ],
65
- "builder_name": "ascend",
66
- "config_name": "train",
67
- "version": {
68
- "version_str": "1.0.0",
69
- "description": "",
70
- "major": 1,
71
- "minor": 0,
72
- "patch": 0
73
- },
74
- "splits": {
75
- "train": {
76
- "name": "train",
77
- "num_bytes": 4316724,
78
- "num_examples": 9869,
79
- "dataset_name": "ascend"
80
- },
81
- "test": {
82
- "name": "test",
83
- "num_bytes": 559170,
84
- "num_examples": 1315,
85
- "dataset_name": "ascend"
86
- },
87
- "validation": {
88
- "name": "validation",
89
- "num_bytes": 489562,
90
- "num_examples": 1130,
91
- "dataset_name": "ascend"
92
- }
93
- },
94
- "download_checksums": {
95
- "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/train_metadata.csv": {
96
- "num_bytes": 1081181,
97
- "checksum": "4cbdf90fe9bf53640bfc285e2539b468a6e412daeb17c36a1b5da478cd9f5b29"
98
- },
99
- "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/test_metadata.csv": {
100
- "num_bytes": 127658,
101
- "checksum": "15689bc1c1a0bc29b250f63221576392b627da9cc1d80e51bb1a422118b9732c"
102
- },
103
- "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/validation_metadata.csv": {
104
- "num_bytes": 118552,
105
- "checksum": "6e53e362991b23ffa49ed991c6062a51d8f286747f341e566c897c02bee72459"
106
- },
107
- "https://huggingface.co/datasets/CAiRE/ASCEND/resolve/main/waves.tar.bz2": {
108
- "num_bytes": 929707032,
109
- "checksum": "b35cc295f1310535a8e250d534aee0adeb90bccbc027a442cdbef81146894529"
110
- }
111
- },
112
- "download_size": 931034423,
113
- "post_processing_size": null,
114
- "dataset_size": 5365456,
115
- "size_in_bytes": 936399879
116
- },
117
- "validation": {
118
- "description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n",
119
- "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n",
120
- "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND",
121
- "license": "",
122
- "features": {
123
- "id": {
124
- "dtype": "string",
125
- "id": null,
126
- "_type": "Value"
127
- },
128
- "path": {
129
- "dtype": "string",
130
- "id": null,
131
- "_type": "Value"
132
- },
133
- "audio": {
134
- "sampling_rate": 16000,
135
- "mono": true,
136
- "decode": true,
137
- "id": null,
138
- "_type": "Audio"
139
- },
140
- "transcription": {
141
- "dtype": "string",
142
- "id": null,
143
- "_type": "Value"
144
- },
145
- "duration": {
146
- "dtype": "float32",
147
- "id": null,
148
- "_type": "Value"
149
- },
150
- "language": {
151
- "dtype": "string",
152
- "id": null,
153
- "_type": "Value"
154
- },
155
- "original_speaker_id": {
156
- "dtype": "int64",
157
- "id": null,
158
- "_type": "Value"
159
- },
160
- "session_id": {
161
- "dtype": "int64",
162
- "id": null,
163
- "_type": "Value"
164
- },
165
- "topic": {
166
- "dtype": "string",
167
- "id": null,
168
- "_type": "Value"
169
- }
170
- },
171
- "post_processed": null,
172
- "supervised_keys": null,
173
- "task_templates": [
174
- {
175
- "task": "automatic-speech-recognition",
176
- "audio_column": "audio",
177
- "transcription_column": "transcription"
178
- }
179
- ],
180
- "builder_name": "ascend",
181
- "config_name": "validation",
182
- "version": {
183
- "version_str": "1.0.0",
184
- "description": "",
185
- "major": 1,
186
- "minor": 0,
187
- "patch": 0
188
- },
189
- "splits": {
190
- "train": {
191
- "name": "train",
192
- "num_bytes": 4316724,
193
- "num_examples": 9869,
194
- "dataset_name": "ascend"
195
- },
196
- "test": {
197
- "name": "test",
198
- "num_bytes": 559170,
199
- "num_examples": 1315,
200
- "dataset_name": "ascend"
201
- },
202
- "validation": {
203
- "name": "validation",
204
- "num_bytes": 489562,
205
- "num_examples": 1130,
206
- "dataset_name": "ascend"
207
- }
208
- },
209
- "download_checksums": {
210
- "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/train_metadata.csv": {
211
- "num_bytes": 1081181,
212
- "checksum": "4cbdf90fe9bf53640bfc285e2539b468a6e412daeb17c36a1b5da478cd9f5b29"
213
- },
214
- "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/test_metadata.csv": {
215
- "num_bytes": 127658,
216
- "checksum": "15689bc1c1a0bc29b250f63221576392b627da9cc1d80e51bb1a422118b9732c"
217
- },
218
- "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/validation_metadata.csv": {
219
- "num_bytes": 118552,
220
- "checksum": "6e53e362991b23ffa49ed991c6062a51d8f286747f341e566c897c02bee72459"
221
- },
222
- "https://huggingface.co/datasets/CAiRE/ASCEND/resolve/main/waves.tar.bz2": {
223
- "num_bytes": 929707032,
224
- "checksum": "b35cc295f1310535a8e250d534aee0adeb90bccbc027a442cdbef81146894529"
225
- }
226
- },
227
- "download_size": 931034423,
228
- "post_processing_size": null,
229
- "dataset_size": 5365456,
230
- "size_in_bytes": 936399879
231
- },
232
- "test": {
233
- "description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n",
234
- "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n",
235
- "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND",
236
- "license": "",
237
- "features": {
238
- "id": {
239
- "dtype": "string",
240
- "id": null,
241
- "_type": "Value"
242
- },
243
- "path": {
244
- "dtype": "string",
245
- "id": null,
246
- "_type": "Value"
247
- },
248
- "audio": {
249
- "sampling_rate": 16000,
250
- "mono": true,
251
- "decode": true,
252
- "id": null,
253
- "_type": "Audio"
254
- },
255
- "transcription": {
256
- "dtype": "string",
257
- "id": null,
258
- "_type": "Value"
259
- },
260
- "duration": {
261
- "dtype": "float32",
262
- "id": null,
263
- "_type": "Value"
264
- },
265
- "language": {
266
- "dtype": "string",
267
- "id": null,
268
- "_type": "Value"
269
- },
270
- "original_speaker_id": {
271
- "dtype": "int64",
272
- "id": null,
273
- "_type": "Value"
274
- },
275
- "session_id": {
276
- "dtype": "int64",
277
- "id": null,
278
- "_type": "Value"
279
- },
280
- "topic": {
281
- "dtype": "string",
282
- "id": null,
283
- "_type": "Value"
284
- }
285
- },
286
- "post_processed": null,
287
- "supervised_keys": null,
288
- "task_templates": [
289
- {
290
- "task": "automatic-speech-recognition",
291
- "audio_column": "audio",
292
- "transcription_column": "transcription"
293
- }
294
- ],
295
- "builder_name": "ascend",
296
- "config_name": "test",
297
- "version": {
298
- "version_str": "1.0.0",
299
- "description": "",
300
- "major": 1,
301
- "minor": 0,
302
- "patch": 0
303
- },
304
- "splits": {
305
- "train": {
306
- "name": "train",
307
- "num_bytes": 4316724,
308
- "num_examples": 9869,
309
- "dataset_name": "ascend"
310
- },
311
- "test": {
312
- "name": "test",
313
- "num_bytes": 559170,
314
- "num_examples": 1315,
315
- "dataset_name": "ascend"
316
- },
317
- "validation": {
318
- "name": "validation",
319
- "num_bytes": 489562,
320
- "num_examples": 1130,
321
- "dataset_name": "ascend"
322
- }
323
- },
324
- "download_checksums": {
325
- "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/train_metadata.csv": {
326
- "num_bytes": 1081181,
327
- "checksum": "4cbdf90fe9bf53640bfc285e2539b468a6e412daeb17c36a1b5da478cd9f5b29"
328
- },
329
- "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/test_metadata.csv": {
330
- "num_bytes": 127658,
331
- "checksum": "15689bc1c1a0bc29b250f63221576392b627da9cc1d80e51bb1a422118b9732c"
332
- },
333
- "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/validation_metadata.csv": {
334
- "num_bytes": 118552,
335
- "checksum": "6e53e362991b23ffa49ed991c6062a51d8f286747f341e566c897c02bee72459"
336
- },
337
- "https://huggingface.co/datasets/CAiRE/ASCEND/resolve/main/waves.tar.bz2": {
338
- "num_bytes": 929707032,
339
- "checksum": "b35cc295f1310535a8e250d534aee0adeb90bccbc027a442cdbef81146894529"
340
- }
341
- },
342
- "download_size": 931034423,
343
- "post_processing_size": null,
344
- "dataset_size": 5365456,
345
- "size_in_bytes": 936399879
346
- },
347
- "main": {
348
- "description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n",
349
- "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n",
350
- "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND",
351
- "license": "",
352
- "features": {
353
- "id": {
354
- "dtype": "string",
355
- "_type": "Value"
356
- },
357
- "path": {
358
- "dtype": "string",
359
- "_type": "Value"
360
- },
361
- "audio": {
362
- "sampling_rate": 16000,
363
- "_type": "Audio"
364
- },
365
- "transcription": {
366
- "dtype": "string",
367
- "_type": "Value"
368
- },
369
- "duration": {
370
- "dtype": "float32",
371
- "_type": "Value"
372
- },
373
- "language": {
374
- "dtype": "string",
375
- "_type": "Value"
376
- },
377
- "original_speaker_id": {
378
- "dtype": "int64",
379
- "_type": "Value"
380
- },
381
- "session_id": {
382
- "dtype": "int64",
383
- "_type": "Value"
384
- },
385
- "topic": {
386
- "dtype": "string",
387
- "_type": "Value"
388
- }
389
- },
390
- "task_templates": [
391
- {
392
- "task": "automatic-speech-recognition"
393
- }
394
- ],
395
- "builder_name": "parquet",
396
- "dataset_name": "ascend",
397
- "config_name": "main",
398
- "version": {
399
- "version_str": "1.0.0",
400
- "major": 1,
401
- "minor": 0,
402
- "patch": 0
403
- },
404
- "splits": {
405
- "train": {
406
- "name": "train",
407
- "num_bytes": 1014573740.14,
408
- "num_examples": 9869,
409
- "dataset_name": null
410
- },
411
- "test": {
412
- "name": "test",
413
- "num_bytes": 106171230.135,
414
- "num_examples": 1315,
415
- "dataset_name": null
416
- },
417
- "validation": {
418
- "name": "validation",
419
- "num_bytes": 106772517.43,
420
- "num_examples": 1130,
421
- "dataset_name": null
422
- }
423
- },
424
- "download_size": 1223536062,
425
- "dataset_size": 1227517487.7050002,
426
- "size_in_bytes": 2451053549.705
427
- }
428
- }