{ "train": { "description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n", "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n", "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND", "license": "", "features": { "id": { "dtype": "string", "id": null, "_type": "Value" }, "path": { "dtype": "string", "id": null, "_type": "Value" }, "audio": { "sampling_rate": 16000, "mono": true, "decode": true, "id": null, "_type": "Audio" }, "transcription": { "dtype": "string", "id": null, "_type": "Value" }, "duration": { "dtype": "float32", "id": null, "_type": "Value" }, "language": { "dtype": "string", "id": null, "_type": "Value" }, "original_speaker_id": { "dtype": "int64", "id": null, "_type": "Value" }, "session_id": { "dtype": "int64", "id": null, "_type": "Value" }, "topic": { "dtype": "string", "id": null, "_type": "Value" } }, "post_processed": null, "supervised_keys": null, "task_templates": [ { "task": "automatic-speech-recognition", "audio_column": "audio", "transcription_column": "transcription" } ], "builder_name": "ascend", "config_name": "train", "version": { "version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0 }, "splits": { "train": { "name": "train", "num_bytes": 4316724, "num_examples": 9869, "dataset_name": "ascend" }, "test": { "name": "test", "num_bytes": 559170, "num_examples": 1315, "dataset_name": "ascend" }, "validation": { "name": "validation", "num_bytes": 489562, "num_examples": 1130, "dataset_name": "ascend" } }, "download_checksums": { "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/train_metadata.csv": { "num_bytes": 1081181, "checksum": "4cbdf90fe9bf53640bfc285e2539b468a6e412daeb17c36a1b5da478cd9f5b29" }, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/test_metadata.csv": { "num_bytes": 127658, "checksum": "15689bc1c1a0bc29b250f63221576392b627da9cc1d80e51bb1a422118b9732c" }, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/validation_metadata.csv": { "num_bytes": 118552, "checksum": "6e53e362991b23ffa49ed991c6062a51d8f286747f341e566c897c02bee72459" }, "https://huggingface.co/datasets/CAiRE/ASCEND/resolve/main/waves.tar.bz2": { "num_bytes": 929707032, "checksum": "b35cc295f1310535a8e250d534aee0adeb90bccbc027a442cdbef81146894529" } }, "download_size": 931034423, "post_processing_size": null, "dataset_size": 5365456, "size_in_bytes": 936399879 }, "validation": { "description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n", "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n", "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND", "license": "", "features": { "id": { "dtype": "string", "id": null, "_type": "Value" }, "path": { "dtype": "string", "id": null, "_type": "Value" }, "audio": { "sampling_rate": 16000, "mono": true, "decode": true, "id": null, "_type": "Audio" }, "transcription": { "dtype": "string", "id": null, "_type": "Value" }, "duration": { "dtype": "float32", "id": null, "_type": "Value" }, "language": { "dtype": "string", "id": null, "_type": "Value" }, "original_speaker_id": { "dtype": "int64", "id": null, "_type": "Value" }, "session_id": { "dtype": "int64", "id": null, "_type": "Value" }, "topic": { "dtype": "string", "id": null, "_type": "Value" } }, "post_processed": null, "supervised_keys": null, "task_templates": [ { "task": "automatic-speech-recognition", "audio_column": "audio", "transcription_column": "transcription" } ], "builder_name": "ascend", "config_name": "validation", "version": { "version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0 }, "splits": { "train": { "name": "train", "num_bytes": 4316724, "num_examples": 9869, "dataset_name": "ascend" }, "test": { "name": "test", "num_bytes": 559170, "num_examples": 1315, "dataset_name": "ascend" }, "validation": { "name": "validation", "num_bytes": 489562, "num_examples": 1130, "dataset_name": "ascend" } }, "download_checksums": { "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/train_metadata.csv": { "num_bytes": 1081181, "checksum": "4cbdf90fe9bf53640bfc285e2539b468a6e412daeb17c36a1b5da478cd9f5b29" }, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/test_metadata.csv": { "num_bytes": 127658, "checksum": "15689bc1c1a0bc29b250f63221576392b627da9cc1d80e51bb1a422118b9732c" }, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/validation_metadata.csv": { "num_bytes": 118552, "checksum": "6e53e362991b23ffa49ed991c6062a51d8f286747f341e566c897c02bee72459" }, "https://huggingface.co/datasets/CAiRE/ASCEND/resolve/main/waves.tar.bz2": { "num_bytes": 929707032, "checksum": "b35cc295f1310535a8e250d534aee0adeb90bccbc027a442cdbef81146894529" } }, "download_size": 931034423, "post_processing_size": null, "dataset_size": 5365456, "size_in_bytes": 936399879 }, "test": { "description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n", "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n", "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND", "license": "", "features": { "id": { "dtype": "string", "id": null, "_type": "Value" }, "path": { "dtype": "string", "id": null, "_type": "Value" }, "audio": { "sampling_rate": 16000, "mono": true, "decode": true, "id": null, "_type": "Audio" }, "transcription": { "dtype": "string", "id": null, "_type": "Value" }, "duration": { "dtype": "float32", "id": null, "_type": "Value" }, "language": { "dtype": "string", "id": null, "_type": "Value" }, "original_speaker_id": { "dtype": "int64", "id": null, "_type": "Value" }, "session_id": { "dtype": "int64", "id": null, "_type": "Value" }, "topic": { "dtype": "string", "id": null, "_type": "Value" } }, "post_processed": null, "supervised_keys": null, "task_templates": [ { "task": "automatic-speech-recognition", "audio_column": "audio", "transcription_column": "transcription" } ], "builder_name": "ascend", "config_name": "test", "version": { "version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0 }, "splits": { "train": { "name": "train", "num_bytes": 4316724, "num_examples": 9869, "dataset_name": "ascend" }, "test": { "name": "test", "num_bytes": 559170, "num_examples": 1315, "dataset_name": "ascend" }, "validation": { "name": "validation", "num_bytes": 489562, "num_examples": 1130, "dataset_name": "ascend" } }, "download_checksums": { "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/train_metadata.csv": { "num_bytes": 1081181, "checksum": "4cbdf90fe9bf53640bfc285e2539b468a6e412daeb17c36a1b5da478cd9f5b29" }, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/test_metadata.csv": { "num_bytes": 127658, "checksum": "15689bc1c1a0bc29b250f63221576392b627da9cc1d80e51bb1a422118b9732c" }, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/validation_metadata.csv": { "num_bytes": 118552, "checksum": "6e53e362991b23ffa49ed991c6062a51d8f286747f341e566c897c02bee72459" }, "https://huggingface.co/datasets/CAiRE/ASCEND/resolve/main/waves.tar.bz2": { "num_bytes": 929707032, "checksum": "b35cc295f1310535a8e250d534aee0adeb90bccbc027a442cdbef81146894529" } }, "download_size": 931034423, "post_processing_size": null, "dataset_size": 5365456, "size_in_bytes": 936399879 }, "main": { "description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n", "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n", "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND", "license": "", "features": { "id": { "dtype": "string", "_type": "Value" }, "path": { "dtype": "string", "_type": "Value" }, "audio": { "sampling_rate": 16000, "_type": "Audio" }, "transcription": { "dtype": "string", "_type": "Value" }, "duration": { "dtype": "float32", "_type": "Value" }, "language": { "dtype": "string", "_type": "Value" }, "original_speaker_id": { "dtype": "int64", "_type": "Value" }, "session_id": { "dtype": "int64", "_type": "Value" }, "topic": { "dtype": "string", "_type": "Value" } }, "task_templates": [ { "task": "automatic-speech-recognition" } ], "builder_name": "parquet", "dataset_name": "ascend", "config_name": "main", "version": { "version_str": "1.0.0", "major": 1, "minor": 0, "patch": 0 }, "splits": { "train": { "name": "train", "num_bytes": 1014573740.14, "num_examples": 9869, "dataset_name": null }, "test": { "name": "test", "num_bytes": 106171230.135, "num_examples": 1315, "dataset_name": null }, "validation": { "name": "validation", "num_bytes": 106772517.43, "num_examples": 1130, "dataset_name": null } }, "download_size": 1223536062, "dataset_size": 1227517487.7050002, "size_in_bytes": 2451053549.705 } }