up
Browse files
README.md
CHANGED
@@ -63,6 +63,17 @@ configs:
|
|
63 |
This datasets contains all query & document embeddings for [BEIR](https://github.com/beir-cellar/beir), embedded with the [Cohere embed-english-v3.0](https://huggingface.co/Cohere/Cohere-embed-english-v3.0) embedding model.
|
64 |
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
## Loading the dataset
|
67 |
|
68 |
### Loading the document embeddings
|
@@ -203,7 +214,7 @@ dataset_split = "test"
|
|
203 |
num_dim = 1024
|
204 |
|
205 |
#Load qrels
|
206 |
-
df = load_dataset(
|
207 |
qrels = {}
|
208 |
for row in df:
|
209 |
qid = row['query_id']
|
@@ -215,14 +226,14 @@ for row in df:
|
|
215 |
qrels[qid][cid] = row['score']
|
216 |
|
217 |
#Load queries
|
218 |
-
df = load_dataset(
|
219 |
|
220 |
query_ids = df['_id']
|
221 |
query_embs = np.asarray(df['emb'])
|
222 |
print("Query embeddings:", query_embs.shape)
|
223 |
|
224 |
#Load corpus
|
225 |
-
df = load_dataset(
|
226 |
|
227 |
docs_ids = df['_id']
|
228 |
|
|
|
63 |
This datasets contains all query & document embeddings for [BEIR](https://github.com/beir-cellar/beir), embedded with the [Cohere embed-english-v3.0](https://huggingface.co/Cohere/Cohere-embed-english-v3.0) embedding model.
|
64 |
|
65 |
|
66 |
+
## Overview of datasets
|
67 |
+
|
68 |
+
This repository hosts all 18 datasets from BEIR, including query and document embeddings. The following table gives an overview of the available datasets.
|
69 |
+
See the next section how to load the individual datasets.
|
70 |
+
|
71 |
+
| Dataset | #Test Queries | #Documents
|
72 |
+
| --- | ---- | --- |
|
73 |
+
| nfcorpus | | 3633 |
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
## Loading the dataset
|
78 |
|
79 |
### Loading the document embeddings
|
|
|
214 |
num_dim = 1024
|
215 |
|
216 |
#Load qrels
|
217 |
+
df = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-qrels", split=dataset_split)
|
218 |
qrels = {}
|
219 |
for row in df:
|
220 |
qid = row['query_id']
|
|
|
226 |
qrels[qid][cid] = row['score']
|
227 |
|
228 |
#Load queries
|
229 |
+
df = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-queries", split=dataset_split)
|
230 |
|
231 |
query_ids = df['_id']
|
232 |
query_embs = np.asarray(df['emb'])
|
233 |
print("Query embeddings:", query_embs.shape)
|
234 |
|
235 |
#Load corpus
|
236 |
+
df = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-corpus", split="train")
|
237 |
|
238 |
docs_ids = df['_id']
|
239 |
|