nreimers commited on
Commit
9587f3f
1 Parent(s): a318cb0
Files changed (1) hide show
  1. README.md +14 -3
README.md CHANGED
@@ -63,6 +63,17 @@ configs:
63
  This datasets contains all query & document embeddings for [BEIR](https://github.com/beir-cellar/beir), embedded with the [Cohere embed-english-v3.0](https://huggingface.co/Cohere/Cohere-embed-english-v3.0) embedding model.
64
 
65
 
 
 
 
 
 
 
 
 
 
 
 
66
  ## Loading the dataset
67
 
68
  ### Loading the document embeddings
@@ -203,7 +214,7 @@ dataset_split = "test"
203
  num_dim = 1024
204
 
205
  #Load qrels
206
- df = load_dataset(dataset_name, "qrels", split=dataset_split)
207
  qrels = {}
208
  for row in df:
209
  qid = row['query_id']
@@ -215,14 +226,14 @@ for row in df:
215
  qrels[qid][cid] = row['score']
216
 
217
  #Load queries
218
- df = load_dataset(dataset_name, "queries", split=dataset_split)
219
 
220
  query_ids = df['_id']
221
  query_embs = np.asarray(df['emb'])
222
  print("Query embeddings:", query_embs.shape)
223
 
224
  #Load corpus
225
- df = load_dataset(dataset_name, "corpus", split="train")
226
 
227
  docs_ids = df['_id']
228
 
 
63
  This datasets contains all query & document embeddings for [BEIR](https://github.com/beir-cellar/beir), embedded with the [Cohere embed-english-v3.0](https://huggingface.co/Cohere/Cohere-embed-english-v3.0) embedding model.
64
 
65
 
66
+ ## Overview of datasets
67
+
68
+ This repository hosts all 18 datasets from BEIR, including query and document embeddings. The following table gives an overview of the available datasets.
69
+ See the next section how to load the individual datasets.
70
+
71
+ | Dataset | #Test Queries | #Documents
72
+ | --- | ---- | --- |
73
+ | nfcorpus | | 3633 |
74
+
75
+
76
+
77
  ## Loading the dataset
78
 
79
  ### Loading the document embeddings
 
214
  num_dim = 1024
215
 
216
  #Load qrels
217
+ df = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-qrels", split=dataset_split)
218
  qrels = {}
219
  for row in df:
220
  qid = row['query_id']
 
226
  qrels[qid][cid] = row['score']
227
 
228
  #Load queries
229
+ df = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-queries", split=dataset_split)
230
 
231
  query_ids = df['_id']
232
  query_embs = np.asarray(df['emb'])
233
  print("Query embeddings:", query_embs.shape)
234
 
235
  #Load corpus
236
+ df = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-corpus", split="train")
237
 
238
  docs_ids = df['_id']
239