|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""LugandaPII: PII for Luganda Language""" |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {Luganda Ner Dataset}, |
|
author={many authors |
|
}, |
|
year={2022} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
LugandaPII is a named entity dataset consisting of PERSON, ORG, LOCATION, NORP, USERID and DATE entities. |
|
The train/validation/test sets are available for the Luganda language. |
|
""" |
|
|
|
|
|
|
|
|
|
_URL = "https://github.com/conradsuuna/luganda-ner-data/raw/main/data" |
|
_TRAINING_FILE = "train.txt" |
|
_VAL_FILE = "val.txt" |
|
_TEST_FILE = "test.txt" |
|
|
|
|
|
class LugPIIConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Masakhaner""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for Masakhaner. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(LugPIIConfig, self).__init__(**kwargs) |
|
|
|
|
|
class Masakhaner(datasets.GeneratorBasedBuilder): |
|
"""Masakhaner dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
LugPIIConfig(name="lug", version=datasets.Version("1.0.0"), description="PII NER Luganda dataset"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"O", |
|
"B-PERSON", |
|
"I-PERSON", |
|
"L-PERSON", |
|
"U-PERSON", |
|
"B-NORP", |
|
"I-NORP", |
|
"L-NORP", |
|
"U-NORP", |
|
"B-DATE", |
|
"I-DATE", |
|
"L-DATE", |
|
"U-DATE", |
|
"B-USERID", |
|
"I-USERID", |
|
"L-USERID", |
|
"U-USERID", |
|
"B-ORG", |
|
"I-ORG", |
|
"L-ORG", |
|
"U-ORG", |
|
"B-LOCATION", |
|
"I-LOCATION", |
|
"L-LOCATION", |
|
"U-LOCATION", |
|
] |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
"train": f"{_URL}/{_TRAINING_FILE}", |
|
"val": f"{_URL}/{_VAL_FILE}", |
|
"test": f"{_URL}/{_TEST_FILE}", |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
guid = 0 |
|
tokens = [] |
|
ner_tags = [] |
|
for line in f: |
|
if line == "" or line == "\n": |
|
if tokens: |
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"ner_tags": ner_tags, |
|
} |
|
guid += 1 |
|
tokens = [] |
|
ner_tags = [] |
|
else: |
|
|
|
splits = line.split(" ") |
|
tokens.append(splits[0]) |
|
ner_tags.append(splits[1].rstrip()) |
|
|
|
if tokens: |
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"ner_tags": ner_tags, |
|
} |
|
|